organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1783-o1784

3-(4-Chloro­phen­yl)-1-phenyl-1H-pyrazole-4-carbaldehyde

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 June 2011; accepted 17 June 2011; online 25 June 2011)

In the title compound, C16H11ClN2O, the chloro-substituted phenyl ring is disordered over two positions with refined site occupancies of 0.503 (2) and 0.497 (2). The dihedral angle between the pyrazole and phenyl rings is 7.93 (7)°. The pyrazole ring also forms dihedral angles of 24.43 (9)° and 28.67 (9)° with the disordered chloro-substituted benzene ring. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, generating R21(7) and R22(10) ring motifs. ππ inter­actions between the pyrazole and phenyl rings [centroid–centroid distance = 3.758 (1) Å] further stabilize the crystal structure.

Related literature

For related pharmacological literature, see: Karci & Karci (2008[Karci, F. & Karci, F. (2008). Dyes Pigm. 76, 97-103.]); Isloor et al. (2000[Isloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265-270.]); Kalluraya et al. (2004[Kalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Ind. J. Het. Chem. 13, 245-248.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Comber et al. (1992[Comber, R. N., Gray, R. J. & Secrist, J. A. (1992). Carbohydr. Res. 216, 441-452.]). For the experimental preparation, see: Vora et al. (2009[Vora, J. J., Vasava, S. B., Parmar, K. C., Chauhan, S. K. & Sharma, S. S. (2009). Eur. J. Chem. 6, 1205-1210.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11ClN2O

  • Mr = 282.72

  • Monoclinic, P 21 /c

  • a = 16.0429 (4) Å

  • b = 4.8585 (1) Å

  • c = 16.7960 (4) Å

  • β = 96.581 (1)°

  • V = 1300.53 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.55 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.858, Tmax = 0.979

  • 26528 measured reflections

  • 3859 independent reflections

  • 3302 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.03

  • 3859 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.95 2.42 3.3545 (18) 167
C7—H7A⋯O1i 0.95 2.33 3.2684 (16) 169
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds have been gaining more importance in recent years due to their pharmacological activities. Nitrogen-, sulfur-, oxygen-containing five- or six-membered heterocyclic compounds are of enormous significance in the field of drug discovery process. Pyrazoles are important compounds that have many derivatives with a wide range of interesting properties, such as antipyretic, hypoglycemic, sedative-hypnotic (Karci & Karci, 2008), analgesic (Isloor et al., 2000), anti-inflammatory (Kalluraya et al., 2004) and antimicrobial activities (Isloor et al., 2009). Much attention was paid to pyrazole as a potential antimicrobial agent after the discovery of the natural pyrazole C-glycoside and pyrazofurin which demonstrated a broad spectrum of antimicrobial activity (Comber et al., 1992).

The molecular structure is shown in Fig 1. The chloro-substituted phenyl ring (C10–C15) is disordered over two positions with refined site occupancies of 0.503 (2) and 0.497 (2). The dihedral angle between the pyrazole ring (N1/N2/C7–C9) and the phenyl ring (C1–C6) is 7.93 (7)°. The pyrazole ring also forms dihedral angles of 24.43 (9)° and 28.67 (9)° with the disordered chloro-substituted phenyl rings (C10–C15) and (C10–C11X–C12X–C13–C14X–C15X), respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the intermolecular C1—H1A···O1 and C7—H7A···O1 hydrogen bonds (Table 1) link the molecules to form dimers, generating R12(7) and R22(10) ring motifs (Bernstein et al., 1995). ππ interactions between the pyrazole and phenyl rings further stabilize the crystal structure; [Cg1···Cg2 = 3.7579 (8) Å, where Cg1 and Cg2 are the centroids of the rings N1/N2/C7–C9 and C1–C6, respectively; symmetry code: x, y - 1, z].

Related literature top

For related pharmacological literature, see: Karci & Karci (2008); Isloor et al. (2000); Kalluraya et al. (2004); Isloor et al. (2009); Comber et al. (1992). For the experimental preparation, see: Vora et al. (2009). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Phosphoryl chloride (5 ml) was added dropwise to cold N,N- dimethylformamide (DMF) (15 ml) with continuous stirring at 273–278 K for about 30 min. 4-Chloroacetophenone phenylhydrazone (3.66 g, 15 mmol) was separately dissolved in 5 ml of DMF and was added dropwise to the former cold mixture with continuous stirring at 273–278 K for an hour. The resulting mixture was further stirred at 323–333 K for 5–6 h and cooled to room temperature. The crude product was poured into crushed ice, resulting in a white precipitate. The precipitate was filtered, washed with water and recrystallized from ethanol. Yield: 3.7 g, 87.4%. M.p.: 413–415 K (Vora et al., 2009).

Refinement top

The chloro-substituted phenyl ring is disordered over two positions with refined site-occupancies of 0.503 (2) and 0.497 (2). All H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disordered components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent the intermolecular hydrogen bonds. Only the major disordered components are shown.
3-(4-Chlorophenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C16H11ClN2OF(000) = 584
Mr = 282.72Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9960 reflections
a = 16.0429 (4) Åθ = 2.4–30.2°
b = 4.8585 (1) ŵ = 0.29 mm1
c = 16.7960 (4) ÅT = 100 K
β = 96.581 (1)°Needle, colourless
V = 1300.53 (5) Å30.55 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3859 independent reflections
Radiation source: fine-focus sealed tube3302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 30.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.858, Tmax = 0.979k = 66
26528 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.6665P]
where P = (Fo2 + 2Fc2)/3
3859 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H11ClN2OV = 1300.53 (5) Å3
Mr = 282.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0429 (4) ŵ = 0.29 mm1
b = 4.8585 (1) ÅT = 100 K
c = 16.7960 (4) Å0.55 × 0.16 × 0.08 mm
β = 96.581 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3859 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3302 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.979Rint = 0.057
26528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3859 reflectionsΔρmin = 0.35 e Å3
218 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.055017 (18)0.04423 (7)0.181350 (19)0.02215 (9)
O10.43582 (6)0.2143 (2)0.07840 (6)0.0270 (2)
N10.32027 (6)0.4298 (2)0.06319 (6)0.0180 (2)
N20.24330 (7)0.4223 (2)0.03471 (7)0.0190 (2)
C10.41332 (9)0.6604 (3)0.14732 (9)0.0241 (3)
H1A0.45960.55760.12250.029*
C20.42428 (9)0.8515 (3)0.20713 (9)0.0248 (3)
H2A0.47850.87810.22340.030*
C30.35726 (9)1.0028 (3)0.24314 (8)0.0238 (3)
H3A0.36541.13220.28400.029*
C40.27791 (9)0.9645 (3)0.21919 (8)0.0276 (3)
H4A0.23181.06930.24340.033*
C50.26568 (8)0.7734 (3)0.15994 (8)0.0245 (3)
H5A0.21140.74620.14390.029*
C60.33339 (8)0.6232 (3)0.12461 (7)0.0183 (2)
C70.37382 (8)0.2434 (3)0.02733 (7)0.0181 (2)
H7A0.43000.21260.03790.022*
C80.33170 (7)0.1040 (3)0.02808 (7)0.0171 (2)
C90.24994 (7)0.2247 (3)0.02049 (7)0.0167 (2)
C100.17600 (7)0.1594 (3)0.06219 (7)0.0160 (2)
C130.03440 (7)0.0390 (3)0.13674 (7)0.0158 (2)
C110.16431 (15)0.0971 (5)0.09304 (15)0.0177 (5)0.503 (2)
H11A0.20470.23650.08710.021*0.503 (2)
C120.09495 (15)0.1604 (5)0.13298 (15)0.0176 (5)0.503 (2)
H12A0.08970.33590.15690.021*0.503 (2)
C140.04106 (15)0.2993 (5)0.10535 (15)0.0187 (5)0.503 (2)
H14A0.00120.43360.10980.022*0.503 (2)
C150.11108 (15)0.3605 (5)0.06696 (15)0.0181 (5)0.503 (2)
H15A0.11610.53700.04360.022*0.503 (2)
C11X0.18437 (14)0.0503 (5)0.14160 (14)0.0155 (5)0.497 (2)
H11B0.23840.01840.16950.019*0.497 (2)
C12X0.11256 (15)0.0091 (5)0.17791 (14)0.0159 (5)0.497 (2)
H12B0.11740.08220.23070.019*0.497 (2)
C14X0.02656 (14)0.1474 (5)0.05831 (14)0.0169 (5)0.497 (2)
H14B0.02730.17990.03010.020*0.497 (2)
C15X0.09871 (15)0.2059 (5)0.02300 (14)0.0173 (5)0.497 (2)
H15B0.09370.27990.02970.021*0.497 (2)
C160.36592 (8)0.1175 (4)0.07881 (8)0.0274 (3)
H16A0.33120.19370.11540.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01577 (14)0.02598 (17)0.02634 (17)0.00049 (11)0.00943 (11)0.00063 (13)
O10.0174 (4)0.0356 (6)0.0282 (5)0.0042 (4)0.0033 (4)0.0034 (4)
N10.0180 (5)0.0166 (5)0.0209 (5)0.0017 (4)0.0091 (4)0.0018 (4)
N20.0182 (5)0.0174 (5)0.0232 (5)0.0007 (4)0.0105 (4)0.0014 (4)
C10.0240 (6)0.0170 (6)0.0336 (7)0.0012 (5)0.0140 (5)0.0014 (5)
C20.0267 (6)0.0191 (6)0.0316 (7)0.0023 (5)0.0161 (5)0.0004 (6)
C30.0300 (7)0.0229 (7)0.0197 (6)0.0059 (6)0.0082 (5)0.0001 (5)
C40.0233 (6)0.0360 (8)0.0232 (6)0.0034 (6)0.0016 (5)0.0054 (6)
C50.0194 (6)0.0331 (8)0.0215 (6)0.0046 (5)0.0041 (5)0.0029 (6)
C60.0223 (6)0.0149 (6)0.0193 (6)0.0035 (5)0.0089 (4)0.0032 (5)
C70.0170 (5)0.0178 (6)0.0205 (6)0.0017 (5)0.0061 (4)0.0035 (5)
C80.0149 (5)0.0190 (6)0.0182 (5)0.0022 (4)0.0048 (4)0.0039 (5)
C90.0164 (5)0.0165 (6)0.0180 (5)0.0024 (4)0.0054 (4)0.0041 (5)
C100.0155 (5)0.0162 (6)0.0171 (5)0.0009 (4)0.0053 (4)0.0024 (4)
C130.0136 (5)0.0179 (6)0.0166 (5)0.0007 (4)0.0046 (4)0.0015 (4)
C110.0130 (10)0.0192 (12)0.0209 (12)0.0028 (9)0.0021 (8)0.0000 (9)
C120.0169 (10)0.0169 (12)0.0192 (11)0.0001 (9)0.0030 (8)0.0023 (9)
C140.0164 (10)0.0198 (12)0.0205 (12)0.0042 (9)0.0049 (9)0.0010 (10)
C150.0189 (11)0.0156 (11)0.0207 (11)0.0008 (9)0.0059 (9)0.0002 (10)
C11X0.0127 (10)0.0170 (11)0.0166 (11)0.0012 (9)0.0013 (8)0.0008 (9)
C12X0.0161 (10)0.0176 (12)0.0145 (10)0.0003 (9)0.0037 (8)0.0018 (9)
C14X0.0127 (10)0.0201 (12)0.0176 (11)0.0003 (9)0.0005 (8)0.0011 (10)
C15X0.0170 (11)0.0197 (12)0.0152 (11)0.0001 (9)0.0020 (8)0.0017 (9)
C160.0160 (6)0.0436 (9)0.0232 (6)0.0018 (6)0.0047 (5)0.0092 (6)
Geometric parameters (Å, º) top
Cl1—C131.7405 (12)C10—C15X1.355 (3)
O1—C161.2168 (16)C10—C111.371 (3)
N1—C71.3427 (17)C10—C11X1.427 (3)
N1—N21.3749 (13)C10—C151.437 (3)
N1—C61.4287 (16)C13—C141.379 (3)
N2—C91.3301 (16)C13—C121.379 (3)
C1—C61.3909 (17)C13—C12X1.381 (3)
C1—C21.3935 (19)C13—C14X1.411 (3)
C1—H1A0.9500C11—C121.398 (3)
C2—C31.383 (2)C11—H11A0.9500
C2—H2A0.9500C12—H12A0.9500
C3—C41.3908 (18)C14—C151.390 (3)
C3—H3A0.9500C14—H14A0.9500
C4—C51.391 (2)C15—H15A0.9500
C4—H4A0.9500C11X—C12X1.394 (3)
C5—C61.3844 (19)C11X—H11B0.9500
C5—H5A0.9500C12X—H12B0.9500
C7—C81.3877 (17)C14X—C15X1.389 (3)
C7—H7A0.9500C14X—H14B0.9500
C8—C91.4292 (16)C15X—H15B0.9500
C8—C161.441 (2)C16—H16A0.9500
C9—C101.4795 (16)
C7—N1—N2112.33 (10)C15—C10—C9120.41 (14)
C7—N1—C6128.90 (10)C14—C13—C12122.76 (16)
N2—N1—C6118.77 (10)C14—C13—C12X103.95 (17)
C9—N2—N1104.97 (10)C12—C13—C12X45.55 (15)
C6—C1—C2118.74 (13)C14—C13—C14X45.84 (15)
C6—C1—H1A120.6C12—C13—C14X101.97 (16)
C2—C1—H1A120.6C12X—C13—C14X120.63 (16)
C3—C2—C1120.88 (12)C14—C13—Cl1118.80 (13)
C3—C2—H2A119.6C12—C13—Cl1118.43 (13)
C1—C2—H2A119.6C12X—C13—Cl1119.40 (13)
C2—C3—C4119.58 (13)C14X—C13—Cl1119.94 (12)
C2—C3—H3A120.2C10—C11—C12122.2 (2)
C4—C3—H3A120.2C10—C11—H11A118.9
C3—C4—C5120.33 (13)C12—C11—H11A118.9
C3—C4—H4A119.8C13—C12—C11118.1 (2)
C5—C4—H4A119.8C13—C12—H12A120.9
C6—C5—C4119.36 (12)C11—C12—H12A120.9
C6—C5—H5A120.3C13—C14—C15118.4 (2)
C4—C5—H5A120.3C13—C14—H14A120.8
C5—C6—C1121.10 (12)C15—C14—H14A120.8
C5—C6—N1118.87 (11)C14—C15—C10120.7 (2)
C1—C6—N1120.02 (12)C14—C15—H15A119.7
N1—C7—C8107.12 (11)C10—C15—H15A119.7
N1—C7—H7A126.4C12X—C11X—C10119.5 (2)
C8—C7—H7A126.4C12X—C11X—H11B120.3
C7—C8—C9104.61 (11)C10—C11X—H11B120.3
C7—C8—C16125.38 (11)C13—C12X—C11X119.6 (2)
C9—C8—C16129.99 (11)C13—C12X—H12B120.2
N2—C9—C8110.96 (10)C11X—C12X—H12B120.2
N2—C9—C10118.70 (11)C15X—C14X—C13119.0 (2)
C8—C9—C10130.32 (11)C15X—C14X—H14B120.5
C15X—C10—C11100.24 (17)C13—C14X—H14B120.5
C15X—C10—C11X119.92 (16)C10—C15X—C14X121.3 (2)
C11—C10—C11X46.48 (15)C10—C15X—H15B119.3
C11—C10—C15117.75 (16)C14X—C15X—H15B119.3
C11X—C10—C15101.05 (15)O1—C16—C8125.03 (13)
C15X—C10—C9118.24 (14)O1—C16—H16A117.5
C11—C10—C9121.72 (14)C8—C16—H16A117.5
C11X—C10—C9121.83 (13)
C7—N1—N2—C90.05 (14)C9—C10—C11—C12179.58 (18)
C6—N1—N2—C9179.65 (11)C14—C13—C12—C112.3 (3)
C6—C1—C2—C30.3 (2)C12X—C13—C12—C1179.1 (3)
C1—C2—C3—C40.2 (2)C14X—C13—C12—C1142.4 (3)
C2—C3—C4—C50.6 (2)Cl1—C13—C12—C11176.41 (17)
C3—C4—C5—C60.5 (2)C10—C11—C12—C134.0 (3)
C4—C5—C6—C10.1 (2)C12—C13—C14—C151.3 (3)
C4—C5—C6—N1179.29 (13)C12X—C13—C14—C1547.0 (3)
C2—C1—C6—C50.5 (2)C14X—C13—C14—C1572.4 (2)
C2—C1—C6—N1179.69 (12)Cl1—C13—C14—C15177.43 (17)
C7—N1—C6—C5172.00 (13)C13—C14—C15—C101.7 (3)
N2—N1—C6—C57.51 (17)C15X—C10—C15—C1478.7 (3)
C7—N1—C6—C18.8 (2)C11—C10—C15—C143.2 (3)
N2—N1—C6—C1171.72 (12)C11X—C10—C15—C1443.1 (3)
N2—N1—C7—C80.27 (14)C9—C10—C15—C14179.34 (18)
C6—N1—C7—C8179.81 (12)C15X—C10—C11X—C12X0.4 (3)
N1—C7—C8—C90.36 (13)C11—C10—C11X—C12X74.3 (3)
N1—C7—C8—C16178.86 (13)C15—C10—C11X—C12X43.6 (3)
N1—N2—C9—C80.19 (13)C9—C10—C11X—C12X179.63 (18)
N1—N2—C9—C10178.74 (10)C14—C13—C12X—C11X46.5 (3)
C7—C8—C9—N20.34 (14)C12—C13—C12X—C11X76.0 (3)
C16—C8—C9—N2178.75 (14)C14X—C13—C12X—C11X0.1 (3)
C7—C8—C9—C10178.42 (12)Cl1—C13—C12X—C11X178.26 (17)
C16—C8—C9—C100.0 (2)C10—C11X—C12X—C130.2 (3)
N2—C9—C10—C15X28.1 (2)C14—C13—C14X—C15X79.2 (3)
C8—C9—C10—C15X150.62 (17)C12—C13—C14X—C15X45.2 (3)
N2—C9—C10—C11152.77 (16)C12X—C13—C14X—C15X0.2 (3)
C8—C9—C10—C1125.9 (2)Cl1—C13—C14X—C15X178.35 (18)
N2—C9—C10—C11X151.92 (16)C11—C10—C15X—C14X44.8 (3)
C8—C9—C10—C11X29.4 (2)C11X—C10—C15X—C14X0.5 (3)
N2—C9—C10—C1523.2 (2)C15—C10—C15X—C14X74.7 (3)
C8—C9—C10—C15158.14 (16)C9—C10—C15X—C14X179.5 (2)
C15X—C10—C11—C1247.8 (3)C13—C14X—C15X—C100.4 (4)
C11X—C10—C11—C1274.0 (3)C7—C8—C16—O11.5 (2)
C15—C10—C11—C124.4 (3)C9—C8—C16—O1176.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.952.423.3545 (18)167
C7—H7A···O1i0.952.333.2684 (16)169
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H11ClN2O
Mr282.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.0429 (4), 4.8585 (1), 16.7960 (4)
β (°) 96.581 (1)
V3)1300.53 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.55 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.858, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
26528, 3859, 3302
Rint0.057
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.03
No. of reflections3859
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.952.423.3545 (18)167
C7—H7A···O1i0.952.333.2684 (16)169
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the award of a research scholarship. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for a Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComber, R. N., Gray, R. J. & Secrist, J. A. (1992). Carbohydr. Res. 216, 441–452.  CrossRef Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265–270.  CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Ind. J. Het. Chem. 13, 245–248.  CAS Google Scholar
First citationKarci, F. & Karci, F. (2008). Dyes Pigm. 76, 97–103.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVora, J. J., Vasava, S. B., Parmar, K. C., Chauhan, S. K. & Sharma, S. S. (2009). Eur. J. Chem. 6, 1205–1210.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1783-o1784
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds