metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(nitrato-κO)copper(II)]-μ-1,4-bis­­(4,5-di­hydro-1,3-oxazol-2-yl)­benzene-κ2N:N′]

aDepartment of Materials and Fibers, Graduate School of Materials Applied Technology, Nanya Institute of Technology, Chung-Li 32091, Taiwan, bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 32023, Taiwan, cR&D Center for Membrane Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan, and dDepartment of Chemistry, Soochow University, Taipei, Taiwan
*Correspondence e-mail: sun@nanya.edu.tw

(Received 22 April 2011; accepted 30 May 2011; online 11 June 2011)

In the title coordination polymer, [Cu(NO3)2(C12H12N2O2)]n, the CuII ion, situated on an inversion center, is coordinated by two O atoms from two nitrate anions and two N atoms from two 1,4-bis­(4,5-dihydro-1,3-oxazol-2-yl)benzene (L) ligands in a distorted square-planar geometry. Each L ligand also lies across an inversion center and bridges two CuII ions, forming a polymeric chain running along the [101] direction. The three O atoms of the nitrate group are disordered over two positions in a 3:2 ratio.

Related literature

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For related structures, see: Wang et al. (2008[Wang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177-1184.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C12H12N2O2)]

  • Mr = 403.80

  • Triclinic, [P \overline 1]

  • a = 6.5240 (8) Å

  • b = 7.5852 (8) Å

  • c = 8.3161 (8) Å

  • α = 90.393 (2)°

  • β = 103.556 (2)°

  • γ = 114.314 (2)°

  • V = 362.09 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 297 K

  • 0.56 × 0.52 × 0.31 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.433, Tmax = 0.616

  • 2053 measured reflections

  • 1392 independent reflections

  • 1384 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.08

  • 1392 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Cu—N1 1.971 (2)
Cu—O2 2.005 (5)
Cu—O3′ 1.994 (6)

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). The AgI complexes containing 1,4-bis(4,5-dihydro-2-oxazolyl)benzene ligands has been reported, which show various two-dimensional networks (Wang et al., 2008). The Cu···Cu distance separated by the bridging ligands is 9.289 (1) Å, while the ligands adopt the anti conformation in the structure. The 1-D chain of the title compound forms 3-D supramolecular structure which is interlinked by nitrate anions through C–H···O hydrogen bonds.

Related literature top

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004). For related structures, see: Wang et al. (2008).

Experimental top

An aqueous solution (5.0 ml) of copper nitrate (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (1.0 mmol) in a tube. Blue crystals were obtained after several weeks. These were washed with methanol and collected in 55.0% yield.

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.93 (phenyl) or 0.97 (methylene) Å and Uiso(H) = 1.2Ueq(C). The O atoms of the nitrate group are disordered over two positions in a 3:2 ratio in the structure.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the chain structure. Ellipsoids are drawn at 30% probability level, and H atoms of spheres of arbitrary radius. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, -z. The disorder is not shown for clarity.
catena-Poly[[bis(nitrato-κO)copper(II)]- µ-1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene-κ2N:N'] top
Crystal data top
[Cu(NO3)2(C12H12N2O2)]Z = 1
Mr = 403.80F(000) = 205
Triclinic, P1Dx = 1.852 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5240 (8) ÅCell parameters from 1976 reflections
b = 7.5852 (8) Åθ = 2.5–26.0°
c = 8.3161 (8) ŵ = 1.56 mm1
α = 90.393 (2)°T = 297 K
β = 103.556 (2)°Parallelepiped, blue
γ = 114.314 (2)°0.56 × 0.52 × 0.31 mm
V = 362.09 (7) Å3
Data collection top
Bruker SMART 1000
diffractometer
1392 independent reflections
Radiation source: fine-focus sealed tube1384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 87
Tmin = 0.433, Tmax = 0.616k = 89
2053 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.1776P]
where P = (Fo2 + 2Fc2)/3
1392 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(NO3)2(C12H12N2O2)]γ = 114.314 (2)°
Mr = 403.80V = 362.09 (7) Å3
Triclinic, P1Z = 1
a = 6.5240 (8) ÅMo Kα radiation
b = 7.5852 (8) ŵ = 1.56 mm1
c = 8.3161 (8) ÅT = 297 K
α = 90.393 (2)°0.56 × 0.52 × 0.31 mm
β = 103.556 (2)°
Data collection top
Bruker SMART 1000
diffractometer
1392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1384 reflections with I > 2σ(I)
Tmin = 0.433, Tmax = 0.616Rint = 0.019
2053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
1392 reflectionsΔρmin = 0.44 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.50000.50000.50000.02820 (18)
N10.5908 (3)0.6368 (3)0.3097 (2)0.0301 (4)
N20.5360 (5)0.1919 (3)0.3813 (3)0.0423 (5)
O10.6228 (3)0.7793 (3)0.0775 (2)0.0392 (4)
O20.6917 (12)0.3558 (9)0.4788 (8)0.0408 (11)0.60
O30.3378 (13)0.1675 (8)0.3452 (9)0.0520 (14)0.60
O40.6161 (11)0.0764 (7)0.3539 (7)0.0586 (12)0.60
O2'0.719 (2)0.3108 (16)0.4449 (13)0.050 (2)0.40
O3'0.3542 (17)0.2391 (10)0.3667 (12)0.0364 (15)0.40
O4'0.4801 (17)0.0347 (11)0.2945 (10)0.0634 (19)0.40
C10.8447 (4)0.7532 (4)0.3336 (4)0.0412 (6)
H1A0.92460.66950.33780.049*
H1B0.91190.84260.43530.049*
C20.8593 (4)0.8615 (4)0.1836 (4)0.0423 (6)
H2A0.91390.99990.21490.051*
H2B0.96430.84230.12730.051*
C30.4874 (4)0.6623 (3)0.1666 (3)0.0282 (4)
C40.2358 (4)0.5773 (3)0.0837 (3)0.0281 (4)
C50.0729 (4)0.4320 (4)0.1458 (3)0.0430 (6)
H5A0.12110.38580.24420.052*
C60.1608 (4)0.6452 (4)0.0632 (3)0.0398 (6)
H6A0.26870.74320.10600.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0260 (2)0.0278 (2)0.0279 (2)0.01314 (17)0.00148 (15)0.00318 (15)
N10.0231 (9)0.0304 (10)0.0319 (10)0.0115 (8)0.0019 (7)0.0001 (7)
N20.0527 (16)0.0355 (11)0.0466 (13)0.0223 (11)0.0206 (11)0.0115 (10)
O10.0270 (8)0.0490 (10)0.0338 (9)0.0097 (7)0.0056 (7)0.0101 (8)
O20.036 (2)0.038 (3)0.050 (3)0.0199 (18)0.0077 (18)0.005 (2)
O30.042 (3)0.046 (4)0.058 (3)0.016 (3)0.0003 (19)0.000 (3)
O40.088 (3)0.049 (3)0.062 (3)0.045 (3)0.031 (3)0.013 (2)
O2'0.042 (4)0.056 (6)0.055 (5)0.028 (4)0.005 (3)0.009 (4)
O3'0.035 (3)0.025 (4)0.044 (3)0.012 (3)0.000 (2)0.001 (3)
O4'0.102 (6)0.042 (3)0.064 (5)0.044 (4)0.028 (4)0.000 (3)
C10.0231 (11)0.0453 (14)0.0454 (14)0.0103 (10)0.0007 (10)0.0027 (11)
C20.0241 (11)0.0472 (14)0.0461 (14)0.0084 (10)0.0047 (10)0.0041 (11)
C30.0254 (11)0.0286 (10)0.0288 (11)0.0118 (8)0.0036 (8)0.0011 (8)
C40.0254 (10)0.0317 (11)0.0241 (10)0.0122 (9)0.0008 (8)0.0013 (8)
C50.0308 (12)0.0513 (15)0.0354 (13)0.0117 (11)0.0018 (10)0.0199 (11)
C60.0272 (12)0.0457 (14)0.0354 (13)0.0074 (10)0.0028 (9)0.0170 (11)
Geometric parameters (Å, º) top
Cu—N1i1.971 (2)O1—C31.337 (3)
Cu—N11.971 (2)O1—C21.453 (3)
Cu—O2i2.005 (5)C1—C21.498 (4)
Cu—O22.005 (5)C1—H1A0.9700
Cu—O3'i1.994 (6)C1—H1B0.9700
Cu—O3'1.994 (6)C2—H2A0.9700
N1—C31.282 (3)C2—H2B0.9700
N1—C11.484 (3)C3—C41.476 (3)
N2—O2'1.152 (12)C4—C51.383 (3)
N2—O31.190 (8)C4—C61.390 (3)
N2—O41.234 (5)C5—C6ii1.381 (4)
N2—O4'1.258 (7)C5—H5A0.9300
N2—O21.340 (7)C6—C5ii1.381 (4)
N2—O3'1.354 (10)C6—H6A0.9300
N1i—Cu—N1180.0O4—N2—O3'150.9 (5)
N1i—Cu—O3'i92.7 (3)O4'—N2—O3'112.3 (6)
N1—Cu—O3'i87.3 (3)O2—N2—O3'94.6 (4)
N1i—Cu—O3'87.3 (3)C3—O1—C2106.60 (19)
N1—Cu—O3'92.7 (3)N2—O2—Cu103.0 (4)
O3'i—Cu—O3'180.000 (1)N2—O3'—Cu103.0 (5)
N1i—Cu—O2i88.6 (2)N1—C1—C2103.7 (2)
N1—Cu—O2i91.4 (2)N1—C1—H1A111.0
O3'i—Cu—O2i59.4 (3)C2—C1—H1A111.0
O3'—Cu—O2i120.6 (3)N1—C1—H1B111.0
N1i—Cu—O291.4 (2)C2—C1—H1B111.0
N1—Cu—O288.6 (2)H1A—C1—H1B109.0
O3'i—Cu—O2120.6 (3)O1—C2—C1104.80 (19)
O3'—Cu—O259.4 (3)O1—C2—H2A110.8
O2i—Cu—O2180.000 (2)C1—C2—H2A110.8
C3—N1—C1107.4 (2)O1—C2—H2B110.8
C3—N1—Cu137.12 (16)C1—C2—H2B110.8
C1—N1—Cu115.40 (16)H2A—C2—H2B108.9
O2'—N2—O3139.9 (5)N1—C3—O1116.8 (2)
O2'—N2—O491.9 (5)N1—C3—C4128.7 (2)
O3—N2—O4128.1 (4)O1—C3—C4114.5 (2)
O2'—N2—O4'129.2 (6)C5—C4—C6119.0 (2)
O3—N2—O4'90.1 (6)C5—C4—C3122.5 (2)
O4—N2—O4'39.0 (4)C6—C4—C3118.5 (2)
O2'—N2—O223.8 (4)C6ii—C5—C4120.6 (2)
O3—N2—O2117.1 (4)C6ii—C5—H5A119.7
O4—N2—O2114.4 (4)C4—C5—H5A119.7
O4'—N2—O2152.8 (6)C5ii—C6—C4120.4 (2)
O2'—N2—O3'117.1 (5)C5ii—C6—H6A119.8
O3—N2—O3'22.9 (3)C4—C6—H6A119.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C12H12N2O2)]
Mr403.80
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.5240 (8), 7.5852 (8), 8.3161 (8)
α, β, γ (°)90.393 (2), 103.556 (2), 114.314 (2)
V3)362.09 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.56 × 0.52 × 0.31
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.433, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
2053, 1392, 1384
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.08
No. of reflections1392
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.44

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu—N11.971 (2)Cu—O3'1.994 (6)
Cu—O22.005 (5)
 

Acknowledgements

The authors are grateful to the National Science Council of the Republic of China and Nanya Institute of Technology for support.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177–1184.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds