metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m970-m971

catena-Poly[[[tetra­aqua­cobalt(II)]-μ-4,4′-bi­pyridine-κ2N:N′] pyridine-3,5-di­carboxyl­ate trihydrate]

aCollege of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: zhuxd@ahpu.edu.cn

(Received 27 April 2011; accepted 17 June 2011; online 25 June 2011)

The crystal structure of the title compound, {[Co(C10H8N2)(H2O)4](C7H3NO4)·3H2O}n, consists of CoII polymeric complex cations, uncoordinated pyridine-3,5-dicarboxyl­ate anions and lattice water mol­ecules. The CoII cation is coordinated by two N atoms from two 4,4′-bipyridine ligands and four water mol­ecules in a distorted octa­hedral geometry. The 4,4′-bipyridine ligands bridge Co cations, forming a polymeric chain running along the b axis. The two pyridine rings of the 4,4′-biyridine are twisted to each other by a dihedral angle of 8.95 (9)°. Extensive O—H⋯O hydrogen bonding network is present in the crystal structure.

Related literature

For the utility of 4,4′-bipyridine in assembling metal-organic frameworks, see: Briadha & Fujita (2001[Briadha, K. & Fujita, M. (2001). Chem. Commun. pp. 15-16.]). For related complexes, see: Li et al. (2004[Li, F., Wang, Y., Bi, W., Li, X. & Cao, R. (2004). Acta Cryst. E60, m1681-m1683.]); Zhang & Zhu (2005[Zhang, L.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, m1264-m1265.]). For the synthesis, see: Whitfield et al. (2001[Whitfield, T., Zheng, L.-M., Wang, X. & Jacobson, A. J. (2001). Solid State Sci. 3, 829-835.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)(H2O)4](C7H3NO4)·3H2O

  • Mr = 506.33

  • Triclinic, [P \overline 1]

  • a = 7.0053 (18) Å

  • b = 11.449 (3) Å

  • c = 14.077 (4) Å

  • α = 105.352 (4)°

  • β = 92.837 (4)°

  • γ = 94.624 (2)°

  • V = 1082.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.669, Tmax = 0.842

  • 8332 measured reflections

  • 4863 independent reflections

  • 4345 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.118

  • S = 0.96

  • 4863 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1W 2.0898 (12)
Co1—O2W 2.0764 (14)
Co1—O3W 2.1245 (13)
Co1—O4W 2.0709 (14)
Co1—N1 2.1692 (14)
Co1—N2i 2.1543 (14)
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2ii 0.85 1.84 2.6813 (19) 173
O1W—H1B⋯O1iii 0.85 1.96 2.780 (2) 162
O2W—H2A⋯O1 0.85 1.91 2.760 (2) 176
O2W—H2B⋯O6W 0.85 1.87 2.707 (2) 168
O3W—H3A⋯O1iii 0.85 2.12 2.897 (2) 152
O3W—H3B⋯O3iv 0.85 1.89 2.7408 (19) 176
O4W—H4A⋯O5W 0.85 1.82 2.665 (3) 171
O4W—H4B⋯O7W 0.85 1.90 2.734 (2) 168
O5W—H5A⋯O4i 0.85 1.90 2.747 (3) 172
O5W—H5B⋯O4v 0.85 2.19 2.856 (3) 135
O6W—H6A⋯N3i 0.85 1.98 2.829 (2) 173
O6W—H6B⋯O2vi 0.85 1.99 2.830 (2) 172
O7W—H7A⋯O3v 0.85 1.98 2.828 (2) 175
O7W—H7B⋯O3 0.85 1.96 2.800 (2) 168
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+1; (vi) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The utility of linear bifunctional ligands, such as 4,4'-bipyridine, has been widely explored in the field of the crystal engineering of metal-organic frameworks (Briadha et al., 2001). Recently, we are interested in the assembly of new compounds which contain not only 4,4'-bipyridine ligand but also carboxylate groups in the crystal structure. In this paper, we report the synthesis and crystal structure of the title compound.

In the title compound, the cation shows a slightly distorted octahedral coordination environment composed of a six-coordinated Co(II) center. The 4,4'-bipyridine units bridge the Co(II) atoms directly to form a one-dimensional chain; similar to a CoII complex (Li et al., 2004) and and a NiII complex (Zhang & Zhu, 2005) reported previously. The pyridine-3,5-dicarboxylate anion does not take part in coordination, but acts as a charge balance with two deprotonated carboxylate groups, and supplies hydrogen-bonding donor and acceptors. O—H···O and N—H···O hydrogen-bonds exist between uncoordinated anion, uncoordinated water and coordinated water molecules, which connect the one-dimensional chain into three-dimensional supramolecular network.

Related literature top

For the utility of 4,4'-bipyridine in assembling metal-organic frameworks, see: Briadha & Fujita (2001). For related complexes, see: Li et al. (2004); Zhang & Zhu (2005). For the synthesis, see: Whitfield et al. (2001).

Experimental top

A mixture of Co(NO3)2.6H2O (0.064 g, 0.2 mmol), 4,4-bipyridine (0.034 g, 0.2 mmol), pyridine-3,5-dicarboxylic acid (0.034 g, 0.2 mmol), NaOH (0.008 g, 0.2 mmol) in water (10 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave. The mixture was heated at 423 K for 72 h, then slowly cooled to room temperature during 48 h. Two kinds of crystals were obtained from the reaction mixture. One is purple and needle shaped, which structure was reported by Whitfield et al. (2001); the other one is red and prism shaped, the structure is reported here.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.95 Å and included in the refinement with a riding-mode approximation with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, H—H = 1.39 Å, and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of one-dimensional chain structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
catena-Poly[[[tetraaquacobalt(II)]-µ-4,4'-bipyridine- κ2N:N'] pyridine-3,5-dicarboxylate trihydrate] top
Crystal data top
[Co(C10H8N2)(H2O)4](C7H3NO4)·3H2OZ = 2
Mr = 506.33F(000) = 526
Triclinic, P1Dx = 1.554 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0053 (18) ÅCell parameters from 2942 reflections
b = 11.449 (3) Åθ = 2.1–27.5°
c = 14.077 (4) ŵ = 0.86 mm1
α = 105.352 (4)°T = 293 K
β = 92.837 (4)°Prism, red
γ = 94.624 (2)°0.50 × 0.40 × 0.20 mm
V = 1082.2 (5) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4863 independent reflections
Radiation source: fine-focus sealed tube4345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.669, Tmax = 0.842k = 1414
8332 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4863 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C10H8N2)(H2O)4](C7H3NO4)·3H2Oγ = 94.624 (2)°
Mr = 506.33V = 1082.2 (5) Å3
Triclinic, P1Z = 2
a = 7.0053 (18) ÅMo Kα radiation
b = 11.449 (3) ŵ = 0.86 mm1
c = 14.077 (4) ÅT = 293 K
α = 105.352 (4)°0.50 × 0.40 × 0.20 mm
β = 92.837 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4863 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4345 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.842Rint = 0.012
8332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.96Δρmax = 0.51 e Å3
4863 reflectionsΔρmin = 0.28 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.38876 (3)0.627012 (17)0.230821 (15)0.02719 (11)
O10.88432 (18)0.45647 (11)0.17193 (9)0.0357 (3)
O20.8709 (2)0.31057 (12)0.02985 (9)0.0457 (3)
O30.8583 (2)0.32631 (11)0.48551 (9)0.0457 (3)
O40.8299 (3)0.12902 (13)0.47420 (10)0.0588 (4)
N10.3885 (2)0.43762 (12)0.23107 (10)0.0289 (3)
N20.3821 (2)0.18489 (12)0.23179 (10)0.0302 (3)
N30.8803 (2)0.03959 (13)0.17180 (11)0.0377 (3)
C10.3827 (3)0.40339 (14)0.31469 (12)0.0331 (4)
H10.38230.46480.37510.040*
C20.3773 (3)0.28345 (14)0.31811 (12)0.0313 (3)
H20.37500.26450.37980.038*
C30.3752 (2)0.19091 (13)0.23145 (11)0.0252 (3)
C40.3781 (3)0.22635 (14)0.14371 (12)0.0312 (3)
H40.37470.16660.08210.037*
C50.3860 (3)0.34851 (15)0.14656 (12)0.0326 (3)
H50.38980.37040.08610.039*
C60.3733 (2)0.06074 (13)0.23155 (11)0.0261 (3)
C70.3486 (3)0.02297 (15)0.31603 (13)0.0380 (4)
H70.32830.08070.37610.046*
C80.3531 (3)0.09846 (15)0.31378 (13)0.0402 (4)
H80.33490.12170.37290.048*
C90.4037 (3)0.14903 (14)0.14960 (13)0.0331 (4)
H90.42330.20860.09050.040*
C100.3990 (3)0.02929 (14)0.14642 (12)0.0326 (4)
H100.41350.00880.08590.039*
C110.8681 (3)0.07055 (16)0.26959 (13)0.0338 (4)
H110.86420.00750.30200.041*
C120.8609 (2)0.18844 (15)0.32658 (11)0.0288 (3)
C130.8678 (2)0.28087 (14)0.27885 (11)0.0274 (3)
H130.86590.36330.31550.033*
C140.8773 (2)0.25103 (14)0.17736 (11)0.0262 (3)
C150.8837 (2)0.12965 (15)0.12731 (12)0.0327 (3)
H150.89080.10930.05770.039*
C160.8777 (2)0.34712 (14)0.12216 (11)0.0288 (3)
C170.8465 (3)0.21575 (15)0.43678 (12)0.0356 (4)
O1W0.19781 (18)0.56791 (11)0.10504 (8)0.0357 (3)
H1A0.18130.60240.05910.043*
H1B0.08980.53390.11320.043*
O2W0.6205 (2)0.61273 (12)0.14338 (12)0.0472 (3)
H2A0.70400.56720.15450.057*
H2B0.69240.67020.13200.057*
O3W0.14285 (19)0.63665 (11)0.31403 (9)0.0380 (3)
H3A0.04500.58660.29050.046*
H3B0.14770.64950.37640.046*
O4W0.5585 (2)0.68048 (12)0.36252 (11)0.0510 (4)
H4A0.63170.74660.37930.061*
H4B0.61930.63100.38500.061*
O5W0.8025 (3)0.87961 (16)0.43207 (17)0.0859 (7)
H5A0.79970.95600.44220.103*
H5B0.91510.85740.42580.103*
O6W0.8252 (2)0.78607 (12)0.08166 (12)0.0575 (4)
H6A0.85000.86100.11180.069*
H6B0.92380.76230.05220.069*
O7W0.7707 (2)0.55000 (13)0.45807 (11)0.0552 (4)
H7A0.87920.59020.47810.066*
H7B0.78060.47800.46230.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03388 (16)0.01625 (15)0.03333 (15)0.00209 (9)0.00055 (10)0.01041 (10)
O10.0457 (7)0.0266 (6)0.0370 (6)0.0041 (5)0.0037 (5)0.0123 (5)
O20.0725 (10)0.0417 (7)0.0278 (6)0.0085 (7)0.0049 (6)0.0165 (5)
O30.0727 (10)0.0329 (7)0.0310 (6)0.0010 (6)0.0004 (6)0.0103 (5)
O40.1060 (13)0.0368 (7)0.0369 (7)0.0019 (8)0.0017 (7)0.0190 (6)
N10.0356 (7)0.0161 (6)0.0364 (7)0.0018 (5)0.0015 (5)0.0103 (5)
N20.0375 (7)0.0179 (6)0.0378 (7)0.0037 (5)0.0024 (5)0.0120 (5)
N30.0482 (9)0.0256 (7)0.0395 (8)0.0035 (6)0.0054 (6)0.0087 (6)
C10.0448 (10)0.0211 (7)0.0341 (8)0.0023 (7)0.0019 (7)0.0090 (6)
C20.0421 (9)0.0221 (7)0.0312 (8)0.0024 (6)0.0012 (6)0.0104 (6)
C30.0248 (7)0.0185 (7)0.0340 (8)0.0025 (5)0.0017 (5)0.0102 (6)
C40.0418 (9)0.0195 (7)0.0329 (8)0.0037 (6)0.0031 (6)0.0081 (6)
C50.0435 (9)0.0236 (8)0.0334 (8)0.0040 (7)0.0029 (6)0.0123 (6)
C60.0255 (7)0.0189 (7)0.0357 (8)0.0029 (5)0.0012 (6)0.0107 (6)
C70.0607 (12)0.0220 (8)0.0345 (9)0.0088 (7)0.0112 (8)0.0104 (6)
C80.0630 (12)0.0240 (8)0.0388 (9)0.0096 (8)0.0119 (8)0.0145 (7)
C90.0446 (9)0.0183 (7)0.0361 (8)0.0038 (6)0.0028 (7)0.0069 (6)
C100.0461 (10)0.0213 (7)0.0326 (8)0.0039 (7)0.0020 (7)0.0112 (6)
C110.0401 (9)0.0274 (8)0.0372 (8)0.0005 (7)0.0017 (7)0.0157 (7)
C120.0305 (8)0.0279 (8)0.0290 (7)0.0004 (6)0.0008 (6)0.0111 (6)
C130.0310 (8)0.0235 (7)0.0290 (7)0.0017 (6)0.0016 (6)0.0098 (6)
C140.0252 (7)0.0268 (8)0.0293 (7)0.0025 (6)0.0029 (5)0.0119 (6)
C150.0385 (9)0.0302 (8)0.0297 (8)0.0018 (7)0.0037 (6)0.0090 (6)
C160.0289 (8)0.0298 (8)0.0314 (8)0.0035 (6)0.0041 (6)0.0139 (6)
C170.0445 (10)0.0323 (8)0.0312 (8)0.0019 (7)0.0030 (7)0.0135 (7)
O1W0.0410 (7)0.0348 (6)0.0350 (6)0.0028 (5)0.0033 (5)0.0192 (5)
O2W0.0391 (7)0.0313 (6)0.0813 (10)0.0112 (5)0.0197 (6)0.0279 (7)
O3W0.0427 (7)0.0393 (7)0.0297 (6)0.0022 (5)0.0051 (5)0.0066 (5)
O4W0.0613 (9)0.0267 (6)0.0630 (9)0.0064 (6)0.0266 (7)0.0171 (6)
O5W0.0886 (14)0.0368 (9)0.1268 (17)0.0160 (9)0.0430 (12)0.0281 (10)
O6W0.0705 (10)0.0318 (7)0.0688 (10)0.0014 (7)0.0318 (8)0.0069 (6)
O7W0.0640 (10)0.0390 (7)0.0635 (9)0.0050 (7)0.0161 (7)0.0190 (7)
Geometric parameters (Å, º) top
Co1—O1W2.0898 (12)C7—H70.9500
Co1—O2W2.0764 (14)C8—H80.9500
Co1—O3W2.1245 (13)C9—C101.386 (2)
Co1—O4W2.0709 (14)C9—H90.9500
Co1—N12.1692 (14)C10—H100.9500
Co1—N2i2.1543 (14)C11—C121.382 (2)
O1—C161.258 (2)C11—H110.9500
O2—C161.252 (2)C12—C131.395 (2)
O3—C171.264 (2)C12—C171.509 (2)
O4—C171.242 (2)C13—C141.385 (2)
N1—C11.337 (2)C13—H130.9500
N1—C51.345 (2)C14—C151.387 (2)
N2—C91.337 (2)C14—C161.505 (2)
N2—C81.343 (2)C15—H150.9500
N3—C111.336 (2)O1W—H1A0.8501
N3—C151.340 (2)O1W—H1B0.8499
C1—C21.384 (2)O2W—H2A0.8501
C1—H10.9500O2W—H2B0.8499
C2—C31.386 (2)O3W—H3A0.8500
C2—H20.9500O3W—H3B0.8500
C3—C41.399 (2)O4W—H4A0.8498
C3—C61.490 (2)O4W—H4B0.8499
C4—C51.385 (2)O5W—H5A0.8500
C4—H40.9500O5W—H5B0.8500
C5—H50.9500O6W—H6A0.8499
C6—C71.383 (2)O6W—H6B0.8499
C6—C101.389 (2)O7W—H7A0.8501
C7—C81.385 (2)O7W—H7B0.8499
O4W—Co1—O2W94.18 (7)N2—C8—H8118.5
O4W—Co1—O1W174.82 (5)C7—C8—H8118.5
O2W—Co1—O1W90.62 (6)N2—C9—C10123.27 (16)
O4W—Co1—O3W88.56 (6)N2—C9—H9118.4
O2W—Co1—O3W177.17 (5)C10—C9—H9118.4
O1W—Co1—O3W86.62 (5)C9—C10—C6120.15 (15)
O4W—Co1—N2i89.64 (5)C9—C10—H10119.9
O2W—Co1—N2i90.37 (5)C6—C10—H10119.9
O1W—Co1—N2i92.30 (5)N3—C11—C12124.18 (15)
O3W—Co1—N2i90.39 (5)N3—C11—H11117.9
O4W—Co1—N190.65 (5)C12—C11—H11117.9
O2W—Co1—N190.96 (5)C11—C12—C13117.76 (15)
O1W—Co1—N187.30 (5)C11—C12—C17120.90 (14)
O3W—Co1—N188.27 (5)C13—C12—C17121.34 (15)
N2i—Co1—N1178.62 (5)C14—C13—C12119.21 (15)
C1—N1—C5116.80 (14)C14—C13—H13120.4
C1—N1—Co1121.68 (11)C12—C13—H13120.4
C5—N1—Co1121.46 (11)C13—C14—C15118.25 (14)
C9—N2—C8116.73 (14)C13—C14—C16121.12 (14)
C9—N2—Co1ii121.19 (11)C15—C14—C16120.63 (14)
C8—N2—Co1ii122.07 (11)N3—C15—C14123.56 (15)
C11—N3—C15117.02 (15)N3—C15—H15118.2
N1—C1—C2123.67 (15)C14—C15—H15118.2
N1—C1—H1118.2O2—C16—O1125.59 (15)
C2—C1—H1118.2O2—C16—C14116.60 (14)
C3—C2—C1120.00 (15)O1—C16—C14117.81 (14)
C3—C2—H2120.0O4—C17—O3124.16 (16)
C1—C2—H2120.0O4—C17—C12118.32 (16)
C2—C3—C4116.44 (14)O3—C17—C12117.48 (14)
C2—C3—C6121.95 (15)Co1—O1W—H1A127.7
C4—C3—C6121.61 (15)Co1—O1W—H1B115.7
C5—C4—C3120.09 (15)H1A—O1W—H1B107.9
C5—C4—H4120.0Co1—O2W—H2A116.1
C3—C4—H4120.0Co1—O2W—H2B127.7
N1—C5—C4122.99 (15)H2A—O2W—H2B100.5
N1—C5—H5118.5Co1—O3W—H3A118.3
C4—C5—H5118.5Co1—O3W—H3B124.0
C7—C6—C10116.35 (14)H3A—O3W—H3B107.1
C7—C6—C3122.19 (15)Co1—O4W—H4A122.4
C10—C6—C3121.46 (15)Co1—O4W—H4B122.6
C6—C7—C8120.48 (16)H4A—O4W—H4B104.3
C6—C7—H7119.8H5A—O5W—H5B113.0
C8—C7—H7119.8H6A—O6W—H6B107.7
N2—C8—C7122.99 (16)H7A—O7W—H7B106.9
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.851.842.6813 (19)173
O1W—H1B···O1iv0.851.962.780 (2)162
O2W—H2A···O10.851.912.760 (2)176
O2W—H2B···O6W0.851.872.707 (2)168
O3W—H3A···O1iv0.852.122.897 (2)152
O3W—H3B···O3v0.851.892.7408 (19)176
O4W—H4A···O5W0.851.822.665 (3)171
O4W—H4B···O7W0.851.902.734 (2)168
O5W—H5A···O4i0.851.902.747 (3)172
O5W—H5B···O4vi0.852.192.856 (3)135
O6W—H6A···N3i0.851.982.829 (2)173
O6W—H6B···O2vii0.851.992.830 (2)172
O7W—H7A···O3vi0.851.982.828 (2)175
O7W—H7B···O30.851.962.800 (2)168
Symmetry codes: (i) x, y+1, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)(H2O)4](C7H3NO4)·3H2O
Mr506.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0053 (18), 11.449 (3), 14.077 (4)
α, β, γ (°)105.352 (4), 92.837 (4), 94.624 (2)
V3)1082.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.669, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
8332, 4863, 4345
Rint0.012
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.118, 0.96
No. of reflections4863
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O1W2.0898 (12)Co1—O4W2.0709 (14)
Co1—O2W2.0764 (14)Co1—N12.1692 (14)
Co1—O3W2.1245 (13)Co1—N2i2.1543 (14)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2ii0.851.842.6813 (19)173
O1W—H1B···O1iii0.851.962.780 (2)162
O2W—H2A···O10.851.912.760 (2)176
O2W—H2B···O6W0.851.872.707 (2)168
O3W—H3A···O1iii0.852.122.897 (2)152
O3W—H3B···O3iv0.851.892.7408 (19)176
O4W—H4A···O5W0.851.822.665 (3)171
O4W—H4B···O7W0.851.902.734 (2)168
O5W—H5A···O4i0.851.902.747 (3)172
O5W—H5B···O4v0.852.192.856 (3)135
O6W—H6A···N3i0.851.982.829 (2)173
O6W—H6B···O2vi0.851.992.830 (2)172
O7W—H7A···O3v0.851.982.828 (2)175
O7W—H7B···O30.851.962.800 (2)168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+2, y+1, z.
 

Acknowledgements

This work was supported financially by the Science Foundation of the Education Department of Anhui Province (KJ2010B012) and the Funds of Talent Introduction Project of Anhui Polytechnic University, China (2008YQQ010).

References

First citationBriadha, K. & Fujita, M. (2001). Chem. Commun. pp. 15–16.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, F., Wang, Y., Bi, W., Li, X. & Cao, R. (2004). Acta Cryst. E60, m1681–m1683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitfield, T., Zheng, L.-M., Wang, X. & Jacobson, A. J. (2001). Solid State Sci. 3, 829–835.  CrossRef CAS Google Scholar
First citationZhang, L.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, m1264–m1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m970-m971
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds