metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Phenyl-6,7-di­hydro­dibenzo[c,f][1,5]aza­bis­­mocin-12(5H)-yl perchlorate

aCollege of Environment Protection and Safety Engineering, University of South China, Hengyang 421001, People's Republic of China, and bKey Laboratory of Pollution Control and Resource Use of Hunan Province, University of South China, Hengyang 421001, People's Republic of China
*Correspondence e-mail: shawn_zhang@sina.com

(Received 4 May 2011; accepted 31 May 2011; online 11 June 2011)

In the title compound, [Bi(C20H17N)(ClO4)] or C20H17BiClNO4, the BiIII ion assumes a distorted ψ trigonal–bipyramidal geometry, with two C atoms and the electron lone pair of the Bi atom at the equatorial positions and an amine N atom and a perchlorate O atom at the apical positions. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis of 12-chloro-6-phenyl-5,6,7,12-tetra­hydro­dibenzo[c,f][1,5]aza­bis­mocine, see: Zhang et al. (2009[Zhang, X.-W., Xia, J., Yan, H.-W., Luo, S.-L., Yin, S.-F., Au, C.-T. & Wong, W.-Y. (2009). J. Organomet. Chem. 694, 3019-3026.]). For general background, see: Shimada et al. (2004[Shimada, S., Yamazaki, O., Tanaka, T., Suzuki, Y. & Tanaka, M. (2004). J. Organomet. Chem. 689, 3012-3023.]); Yin et al. (2008[Yin, S., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. Int. Ed. 47, 6590-6593.]); Zhang et al. (2010[Zhang, X.-W., Qiu, R.-H., Tan, N.-Y., Yin, S.-F., Xia, J., Au, C.-T. & Luo, S.-L. (2010). Tetrahedron Lett. 51, 153-156.]); Tan & Zhang (2011[Tan, N. & Zhang, X. (2011). Acta Cryst. E67, m252.]). For related structures, see: Ohkata et al. (1989[Ohkata, K., Takemoto, S., Ohnishi, M. & Akiba, K. Y. (1989). Tetrahedron Lett. 30, 4841-4844.]); Minoura et al. (1999[Minoura, M., Kanamori, Y., Miyake, A. & Akiba, K. (1999). Chem. Lett. pp. 861-862.]).

[Scheme 1]

Experimental

Crystal data
  • [Bi(C20H17N)(ClO4)]

  • Mr = 579.78

  • Monoclinic, P 21 /c

  • a = 12.0635 (10) Å

  • b = 14.0755 (12) Å

  • c = 11.5121 (10) Å

  • β = 107.590 (2)°

  • V = 1863.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.63 mm−1

  • T = 293 K

  • 0.32 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan(SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.100, Tmax = 0.145

  • 9267 measured reflections

  • 3279 independent reflections

  • 2585 reflections with I > 2σ(I)

  • Rint = 0.166

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.163

  • S = 1.02

  • 3279 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 4.89 e Å−3

  • Δρmin = −4.14 e Å−3

Table 1
Selected bond lengths (Å)

Bi—N1 2.387 (10)
Bi—O1 2.546 (10)
Bi—C1 2.245 (13)
Bi—C8 2.204 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.46 3.137 (17) 130
C14—H14B⋯O2ii 0.97 2.55 3.398 (16) 146
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bismuth is a nontoxic and noncarcinogenic element and many of its compounds are low in toxicity and can be safely used in areas such as medicine, catalysis, and synthesis (Shimada et al., 2004; Yin et al., 2008; Zhang, Qiu, Tan et al., 2010). The 5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocine framework is highly stable as a organobismuth Fragment because the weakly coordination exists between bismuth and nitrogen atoms on 1,5-azabismocine (Ohkata et al.,1989; Minoura et al.,1999), and therefore, is suitable for the study of organobismuth compounds bearing various groups on the bismuth and nitrogen atom for potential uses.

In the present paper, we report the crystal structure of the title compound (Fig. 1). The central bismuth–containing part of the complex exhibits a distorted pseudo trigonal–bipyramidal structure. The C (8), C (1) atoms and a lone electron pair of the Bi atom exist at the equatorial positions while the N (1) and O (1) atoms are located at the apical positions. The Bi–C (8) and Bi–C (1) distance is 2.250 (13) Å and 2.204 (12) Å, respectively. The C (8)–Bi–C (1) angle is 92.5 (5) ° while the N (1)–Bi–O (1) angle is 154.0 (3)°(rather than 180°). The Bi–N (1) distance (2.388 (10) Å) is shorter than 2.607 (5) Å of the precursor, C6H5N(CH2C6H4)2BiCl.The Bi–O (1) distance(2.546 (10) Å) is shorter than Bi–Cl(1) distance 2.597 (19) Å also(Zhang, Xia, Yan et al., 2009).

Related literature top

For the synthesis of 12-chloro-6-phenyl-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azabismocine, see: Zhang et al. (2009). For general background, see: Shimada et al. (2004); Yin et al. (2008); Zhang et al. (2010); Tan & Zhang (2011). For related structures, see: Ohkata et al. (1989); Minoura et al. (1999).

Experimental top

The following procedures are recommended for synthesis of the title compound (I): 12-chloro-6-phenyl-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azabismocine (0.516 g, 1.0 mmol) was dissolved in 15 ml THF, then a solution of AgClO4 (0.207 g, 1.0 mmol) in 15.0 ml THF was added. After the mixture was stirred in the dark at room temperature for 2 h, it was filtered. The filtrate mixed with 1.0 ml hexane was refrigerated for 24 h, giving colorless crystals (0.539 g, 93.0%).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å for aryl, 0.98 Å methine and 0.97 Å for methylene H atoms, respectively. Uiso(H)= 1.2Ueq(C) for all H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.
6-Phenyl-6,7-dihydrodibenzo[c,f][1,5]azabismocin-12(5H)-yl perchlorate top
Crystal data top
[Bi(C20H17N)(ClO4)]F(000) = 1104
Mr = 579.78Dx = 2.067 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2936 reflections
a = 12.0635 (10) Åθ = 2.7–24.2°
b = 14.0755 (12) ŵ = 9.63 mm1
c = 11.5121 (10) ÅT = 293 K
β = 107.590 (2)°Prismatic, colorless
V = 1863.4 (3) Å30.32 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3279 independent reflections
Radiation source: fine-focus sealed tube2585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.166
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2001)
h = 1014
Tmin = 0.100, Tmax = 0.145k = 1316
9267 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0816P)2]
where P = (Fo2 + 2Fc2)/3
3279 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 4.89 e Å3
0 restraintsΔρmin = 4.14 e Å3
Crystal data top
[Bi(C20H17N)(ClO4)]V = 1863.4 (3) Å3
Mr = 579.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0635 (10) ŵ = 9.63 mm1
b = 14.0755 (12) ÅT = 293 K
c = 11.5121 (10) Å0.32 × 0.21 × 0.20 mm
β = 107.590 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3279 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2001)
2585 reflections with I > 2σ(I)
Tmin = 0.100, Tmax = 0.145Rint = 0.166
9267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.02Δρmax = 4.89 e Å3
3279 reflectionsΔρmin = 4.14 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi0.74646 (4)0.77309 (3)0.84604 (4)0.0321 (2)
Cl10.7240 (3)1.0213 (2)0.8825 (3)0.0378 (7)
N10.7225 (7)0.6171 (8)0.7606 (7)0.033 (2)
O10.7940 (9)0.9494 (7)0.8480 (10)0.063 (3)
O20.6291 (9)0.9730 (7)0.9075 (10)0.069 (3)
O30.6836 (10)1.0854 (8)0.7850 (10)0.071 (3)
O40.7937 (12)1.0687 (8)0.9874 (10)0.086 (4)
C10.6226 (11)0.7895 (8)0.6574 (11)0.037 (3)
C20.6002 (10)0.8714 (8)0.5878 (10)0.034 (3)
H20.63730.92810.61810.041*
C30.5204 (11)0.8671 (9)0.4706 (11)0.041 (3)
H30.50260.92220.42410.049*
C40.4688 (12)0.7846 (8)0.4240 (12)0.042 (3)
H40.41630.78300.34590.051*
C50.4949 (11)0.7005 (9)0.4943 (11)0.037 (3)
H50.46030.64350.46170.045*
C60.5695 (10)0.7026 (9)0.6080 (10)0.033 (3)
C70.5996 (10)0.6133 (8)0.6827 (9)0.031 (3)
H7A0.54890.60680.73350.037*
H7B0.58810.55860.62920.037*
C80.8978 (11)0.7594 (8)0.7776 (11)0.030 (3)
C90.9896 (11)0.8252 (10)0.7942 (12)0.047 (3)
H90.99140.87870.84210.056*
C101.0741 (11)0.8122 (10)0.7424 (14)0.051 (4)
H101.13370.85650.75420.062*
C111.0723 (14)0.7321 (10)0.6709 (16)0.055 (4)
H111.12910.72460.63210.066*
C120.9893 (10)0.6651 (9)0.6570 (11)0.038 (3)
H120.99190.61010.61320.045*
C130.8986 (9)0.6785 (8)0.7091 (9)0.030 (2)
C140.8015 (10)0.6065 (8)0.6812 (10)0.033 (3)
H14A0.83500.54330.69230.040*
H14B0.75550.61280.59650.040*
C150.7472 (9)0.5399 (9)0.8534 (10)0.033 (3)
C160.6852 (11)0.4552 (9)0.8367 (12)0.041 (3)
H160.62400.44550.76590.049*
C170.7139 (13)0.3865 (10)0.9238 (14)0.053 (4)
H170.67230.32980.91170.064*
C180.8062 (14)0.4002 (11)1.0325 (14)0.058 (4)
H180.82510.35321.09190.069*
C190.8671 (14)0.4831 (12)1.0489 (13)0.064 (4)
H190.92810.49201.12020.077*
C200.8408 (11)0.5534 (11)0.9634 (11)0.050 (3)
H200.88330.60970.97630.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi0.0313 (3)0.0438 (3)0.0201 (3)0.00040 (18)0.0062 (2)0.00470 (18)
Cl10.0407 (17)0.0414 (16)0.0248 (14)0.0024 (13)0.0001 (12)0.0037 (13)
N10.018 (5)0.070 (7)0.007 (4)0.002 (4)0.001 (4)0.001 (4)
O10.047 (6)0.064 (7)0.079 (8)0.005 (5)0.020 (5)0.009 (6)
O20.054 (6)0.076 (7)0.086 (8)0.001 (5)0.036 (6)0.026 (6)
O30.082 (8)0.065 (7)0.059 (7)0.000 (6)0.008 (6)0.034 (6)
O40.122 (11)0.076 (8)0.035 (6)0.017 (7)0.015 (6)0.011 (6)
C10.038 (7)0.045 (7)0.033 (7)0.005 (5)0.016 (6)0.005 (6)
C20.041 (7)0.038 (6)0.025 (6)0.005 (5)0.012 (5)0.003 (5)
C30.043 (7)0.053 (8)0.032 (7)0.013 (6)0.019 (6)0.013 (6)
C40.044 (8)0.049 (8)0.030 (7)0.006 (6)0.006 (6)0.004 (6)
C50.034 (7)0.050 (8)0.022 (6)0.002 (5)0.002 (5)0.008 (5)
C60.021 (6)0.054 (7)0.025 (6)0.000 (5)0.006 (5)0.007 (5)
C70.033 (6)0.036 (6)0.020 (5)0.006 (5)0.003 (5)0.004 (5)
C80.030 (7)0.038 (6)0.027 (6)0.001 (5)0.015 (5)0.003 (5)
C90.045 (8)0.045 (8)0.048 (8)0.013 (6)0.010 (6)0.015 (7)
C100.031 (7)0.058 (8)0.066 (9)0.013 (6)0.015 (7)0.005 (8)
C110.051 (10)0.066 (10)0.058 (10)0.007 (7)0.030 (8)0.012 (8)
C120.035 (7)0.046 (7)0.034 (6)0.004 (5)0.012 (5)0.003 (6)
C130.031 (6)0.039 (6)0.020 (5)0.002 (5)0.006 (5)0.003 (5)
C140.034 (6)0.042 (7)0.026 (6)0.001 (5)0.014 (5)0.003 (5)
C150.036 (7)0.036 (7)0.030 (6)0.004 (5)0.015 (5)0.006 (5)
C160.038 (7)0.045 (8)0.039 (7)0.005 (6)0.010 (6)0.010 (6)
C170.059 (9)0.045 (8)0.063 (9)0.005 (7)0.029 (8)0.020 (7)
C180.066 (10)0.063 (10)0.050 (9)0.020 (8)0.026 (8)0.024 (8)
C190.061 (10)0.083 (12)0.041 (8)0.011 (9)0.005 (7)0.018 (8)
C200.042 (8)0.069 (10)0.027 (7)0.000 (7)0.007 (6)0.004 (7)
Geometric parameters (Å, º) top
Bi—N12.387 (10)C8—C131.387 (17)
Bi—O12.546 (10)C8—C91.411 (17)
Bi—C12.245 (13)C9—C101.340 (18)
Bi—C82.204 (12)C9—H90.9300
Cl1—O31.407 (10)C10—C111.39 (2)
Cl1—O41.413 (10)C10—H100.9300
Cl1—O21.434 (10)C11—C121.349 (19)
Cl1—O11.448 (10)C11—H110.9300
N1—C71.484 (13)C12—C131.410 (16)
N1—C151.490 (15)C12—H120.9300
N1—C141.514 (12)C13—C141.508 (15)
C1—C21.383 (16)C14—H14A0.9700
C1—C61.418 (17)C14—H14B0.9700
C2—C31.402 (17)C15—C161.389 (18)
C2—H20.9300C15—C201.432 (16)
C3—C41.351 (18)C16—C171.360 (18)
C3—H30.9300C16—H160.9300
C4—C51.414 (18)C17—C181.41 (2)
C4—H40.9300C17—H170.9300
C5—C61.347 (16)C18—C191.36 (2)
C5—H50.9300C18—H180.9300
C6—C71.504 (16)C19—C201.365 (19)
C7—H7A0.9700C19—H190.9300
C7—H7B0.9700C20—H200.9300
C8—Bi—C192.5 (5)C13—C8—C9118.4 (11)
C8—Bi—N177.4 (4)C13—C8—Bi115.1 (8)
C1—Bi—N174.6 (4)C9—C8—Bi126.5 (9)
C8—Bi—O183.1 (4)C10—C9—C8121.5 (13)
C1—Bi—O189.4 (4)C10—C9—H9119.3
N1—Bi—O1154.0 (3)C8—C9—H9119.3
O3—Cl1—O4110.7 (7)C9—C10—C11119.7 (13)
O3—Cl1—O2111.0 (7)C9—C10—H10120.2
O4—Cl1—O2110.9 (7)C11—C10—H10120.2
O3—Cl1—O1108.6 (7)C12—C11—C10120.9 (13)
O4—Cl1—O1108.6 (8)C12—C11—H11119.5
O2—Cl1—O1106.9 (6)C10—C11—H11119.5
C7—N1—C15110.7 (9)C11—C12—C13120.0 (12)
C7—N1—C14109.2 (8)C11—C12—H12120.0
C15—N1—C14109.6 (8)C13—C12—H12120.0
C7—N1—Bi104.8 (7)C8—C13—C12119.4 (11)
C15—N1—Bi113.7 (6)C8—C13—C14122.3 (10)
C14—N1—Bi108.6 (7)C12—C13—C14118.2 (10)
Cl1—O1—Bi122.3 (6)C13—C14—N1113.3 (9)
C2—C1—C6120.1 (12)C13—C14—H14A108.9
C2—C1—Bi127.1 (9)N1—C14—H14A108.9
C6—C1—Bi112.7 (8)C13—C14—H14B108.9
C1—C2—C3118.6 (12)N1—C14—H14B108.9
C1—C2—H2120.7H14A—C14—H14B107.7
C3—C2—H2120.7C16—C15—C20119.0 (11)
C4—C3—C2121.3 (12)C16—C15—N1123.0 (10)
C4—C3—H3119.4C20—C15—N1118.0 (11)
C2—C3—H3119.4C17—C16—C15120.1 (13)
C3—C4—C5119.8 (13)C17—C16—H16119.9
C3—C4—H4120.1C15—C16—H16119.9
C5—C4—H4120.1C16—C17—C18120.8 (14)
C6—C5—C4120.4 (12)C16—C17—H17119.6
C6—C5—H5119.8C18—C17—H17119.6
C4—C5—H5119.8C19—C18—C17119.2 (13)
C5—C6—C1119.8 (12)C19—C18—H18120.4
C5—C6—C7120.9 (11)C17—C18—H18120.4
C1—C6—C7119.3 (11)C18—C19—C20121.6 (15)
N1—C7—C6109.9 (9)C18—C19—H19119.2
N1—C7—H7A109.7C20—C19—H19119.2
C6—C7—H7A109.7C19—C20—C15119.4 (14)
N1—C7—H7B109.7C19—C20—H20120.3
C6—C7—H7B109.7C15—C20—H20120.3
H7A—C7—H7B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.463.137 (17)130
C14—H14B···O2ii0.972.553.398 (16)146
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Bi(C20H17N)(ClO4)]
Mr579.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.0635 (10), 14.0755 (12), 11.5121 (10)
β (°) 107.590 (2)
V3)1863.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)9.63
Crystal size (mm)0.32 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2001)
Tmin, Tmax0.100, 0.145
No. of measured, independent and
observed [I > 2σ(I)] reflections
9267, 3279, 2585
Rint0.166
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.163, 1.02
No. of reflections3279
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)4.89, 4.14

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Bi—N12.387 (10)Bi—C12.245 (13)
Bi—O12.546 (10)Bi—C82.204 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.463.137 (17)130
C14—H14B···O2ii0.972.553.398 (16)146
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the National Science Foundation of China (grant No. 51074093) for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMinoura, M., Kanamori, Y., Miyake, A. & Akiba, K. (1999). Chem. Lett. pp. 861–862.  Web of Science CSD CrossRef Google Scholar
First citationOhkata, K., Takemoto, S., Ohnishi, M. & Akiba, K. Y. (1989). Tetrahedron Lett. 30, 4841–4844.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, S., Yamazaki, O., Tanaka, T., Suzuki, Y. & Tanaka, M. (2004). J. Organomet. Chem. 689, 3012–3023.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, N. & Zhang, X. (2011). Acta Cryst. E67, m252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, S., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. Int. Ed. 47, 6590–6593.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-W., Qiu, R.-H., Tan, N.-Y., Yin, S.-F., Xia, J., Au, C.-T. & Luo, S.-L. (2010). Tetrahedron Lett. 51, 153–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-W., Xia, J., Yan, H.-W., Luo, S.-L., Yin, S.-F., Au, C.-T. & Wong, W.-Y. (2009). J. Organomet. Chem. 694, 3019–3026.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds