metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-(Di­methyl sulfoxide-κO)[N′-(3-eth­­oxy-2-oxido­benzyl­­idene-κO)-2-hy­dr­oxy­benzohydrazidato-κ2N′,O]dioxido­molybdenum(VI)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 20 May 2011; accepted 27 May 2011; online 4 June 2011)

The coordination geometry at the MoVI atom in the title compound, [Mo(C16H14N2O4)O2(C2H6OS)], is distorted octa­hedral. The phenolate O, imino N, oxide O from the enolized carbonyl group and one of the terminal O atoms form the equatorial plane; the axial positions are occupied by the other terminal O atom of the dioxidomolybdenum group and the donor O atom of DMSO. The O=Mo=O angle is 105.31 (6)°. An intra­molecular O—H⋯N hydrogen bond and weak inter­molecular C—H⋯O hydrogen bonds are present in the structure.

Related literature

For related Schiff base complexes of molybdenum, see: Rajan & Chakravorty (1981[Rajan, O. A. & Chakravorty, A. (1981). Inorg. Chem. 20, 660-664.]). For Mo=O bond lengths in cis-di­oxidomolybdenum(VI) complexes, see: Dinda et al. (2006[Dinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375-2382.]); Rao et al. (1999[Rao, S. N., Munshi, K. N., Rao, N. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491-2497.]); Syamal & Maurya (1986[Syamal, A. & Maurya, M. R. (1986). Transition Met. Chem. 11, 235-238.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C16H14N2O4)O2(C2H6OS)]

  • Mr = 504

  • Monoclinic, P 21 /c

  • a = 7.7527 (1) Å

  • b = 20.6173 (4) Å

  • c = 12.6506 (2) Å

  • β = 100.931 (1)°

  • V = 1985.38 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 100 K

  • 0.37 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.752, Tmax = 0.788

  • 18375 measured reflections

  • 4556 independent reflections

  • 4485 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.120

  • S = 1.15

  • 4556 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −1.68 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—N1 2.2343 (13)
Mo1—O1 1.9197 (11)
Mo1—O2 1.7132 (11)
Mo1—O3 1.7055 (12)
Mo1—O4 2.0297 (11)
Mo1—O6 2.2928 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯N2 0.82 1.87 2.5859 (19) 145
C9—H9⋯O3i 0.93 2.54 3.217 (2) 130
C18—H18C⋯O3ii 0.96 2.56 3.438 (2) 152
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The coordination chemistry of molybdenum has taken cognizance of by the scientific community in the last 20 years is because of its ability to achieve multiple common oxidation states ranging from +4 to +6 as well as to form stable complexes with Schiff base ligands (Rajan & Chakravorty, 1981). The title compound represents one of the stable molybdenum complex containing a tridentate O,N,O' Schiff base ligand. This molybdenum complex consists of a discrete mononuclear unit (Scheme 1). The overall geometry at molybdenum is a six coordinate octahedron with the bonds formed by the dibasic tridentate ligands together with the two terminal oxygen atoms and the donor oxygen atom of DMSO. The relatively long bond length between Mo and O6 from the DMSO molecule [2.293 (1) Å] shows that the coordination site is labile. The Mo = O bond distances are 1.706 (1) and 1.713 (1) Å, which fall in the expected range for most of the cis-dioxomolybdenum(VI) complexes (Dinda, et al., 2006; Syamal & Maurya, 1986 and Rao, et al., 1999).

Related literature top

For related Schiff base complexes of molybdenum, see: Rajan & Chakravorty (1981). For MoO bond distances in cis-dioxomolybdenum(VI) complexes, see: Dinda et al. (2006); Rao et al. (1999); Syamal & Maurya (1986).

Experimental top

The Schiff base ligand was prepared by the condensation reaction of salicylic acid hydrazide with 3-ethoxysalicylaldehyde. The title compound was prepared from the equimolar amount of the prepared Schiff base (0.30 g, 1.0 mmol) and bis(acetylacetonato)dioxomolybdenum(VI), [MoO2(acac)2] (0.328 g, 1.0 mmol) in refluxing ethanol (100 ml). The solution was then added with a few drops of DMSO and refluxed for another 1 h. The solution was left for recrystallizaton at room temperature during which orange colour crystals were obtained.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.93 to 0.97 Å) and were treated as riding on their parent carbon atoms, with Uiso(H) = 1.2–1.5 times Ueq(C). The hydroxy-H was refined with a restraint of 0.82 ± 0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of cisdioxo(3-ethoxysalicylaldehyde- 2-hydroxybenzoylhydrazonato-κ3-O,N,O)dimethyl sulfoxide κ-Omolybdenum(VI)showing 50% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
cis-(Dimethyl sulfoxide-κO)[N'-(3-ethoxy-2- oxidobenzylidene-κO)-2-hydroxybenzohydrazidato- κ2N',O]dioxidomolybdenum(VI) top
Crystal data top
[Mo(C16H14N2O4)O2(C2H6OS)]F(000) = 1024
Mr = 504Dx = 1.677 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9911 reflections
a = 7.7527 (1) Åθ = 2.6–28.3°
b = 20.6173 (4) ŵ = 0.81 mm1
c = 12.6506 (2) ÅT = 100 K
β = 100.931 (1)°Block, orange
V = 1985.38 (6) Å30.37 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4556 independent reflections
Radiation source: fine-focus sealed tube4485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.752, Tmax = 0.788k = 2626
18375 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4556 reflections(Δ/σ)max = 0.002
266 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 1.68 e Å3
Crystal data top
[Mo(C16H14N2O4)O2(C2H6OS)]V = 1985.38 (6) Å3
Mr = 504Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7527 (1) ŵ = 0.81 mm1
b = 20.6173 (4) ÅT = 100 K
c = 12.6506 (2) Å0.37 × 0.30 × 0.30 mm
β = 100.931 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4556 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4485 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.788Rint = 0.017
18375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.15Δρmax = 0.47 e Å3
4556 reflectionsΔρmin = 1.68 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.347736 (16)0.942369 (6)0.250939 (9)0.01077 (11)
O40.40367 (15)1.02857 (5)0.18762 (9)0.0140 (2)
O60.06983 (15)0.98254 (5)0.19413 (9)0.0149 (2)
O50.09177 (17)0.79029 (6)0.41705 (10)0.0189 (3)
O20.30947 (16)0.89967 (5)0.13261 (9)0.0159 (2)
O10.22888 (15)0.89225 (5)0.34315 (9)0.0145 (2)
C10.1871 (2)0.89761 (7)0.44109 (12)0.0132 (3)
C20.2087 (2)0.95550 (8)0.50111 (13)0.0137 (3)
C90.2673 (2)1.01532 (7)0.45991 (13)0.0131 (3)
H90.26991.05240.50190.016*
N10.31605 (17)1.02025 (6)0.36858 (11)0.0129 (3)
N20.35536 (18)1.08258 (7)0.33859 (11)0.0144 (3)
C100.3984 (2)1.08222 (7)0.24361 (13)0.0135 (3)
C110.4365 (2)1.14361 (7)0.19552 (12)0.0148 (3)
C160.4873 (2)1.14481 (8)0.09462 (13)0.0149 (3)
H160.50331.10580.06080.018*
C150.5142 (2)1.20234 (8)0.04451 (13)0.0179 (3)
H150.54551.20210.02290.021*
C140.4938 (2)1.26079 (8)0.09593 (15)0.0205 (3)
H140.51191.29970.06250.025*
C130.4469 (3)1.26160 (8)0.19596 (14)0.0233 (4)
H130.43561.30090.23000.028*
C120.4164 (2)1.20308 (8)0.24641 (13)0.0185 (3)
O70.3642 (2)1.20795 (6)0.34234 (11)0.0278 (3)
H70.34321.17170.36330.042*
C30.1605 (2)0.95732 (9)0.60289 (13)0.0166 (3)
H30.17500.99540.64290.020*
C40.0923 (2)0.90354 (8)0.64354 (13)0.0190 (3)
H40.06110.90530.71090.023*
C50.0698 (2)0.84628 (8)0.58431 (14)0.0196 (3)
H50.02460.80990.61290.024*
C60.1139 (2)0.84283 (8)0.48301 (13)0.0157 (3)
C70.0258 (2)0.73202 (8)0.45849 (14)0.0189 (3)
H7B0.09080.73920.47350.023*
H7A0.10280.71840.52440.023*
C80.0207 (2)0.68153 (8)0.37203 (15)0.0204 (3)
H8C0.05020.69690.30620.031*
H8A0.02890.64220.39380.031*
H8B0.13780.67330.36090.031*
S10.05345 (6)0.948802 (19)0.10195 (3)0.01434 (13)
C170.2453 (2)0.99843 (9)0.08388 (14)0.0188 (3)
H17A0.33660.97870.03190.028*
H17C0.21861.04050.05880.028*
H17B0.28411.00280.15120.028*
C180.1346 (2)0.87857 (9)0.15964 (14)0.0215 (3)
H18A0.04000.84860.18190.032*
H18B0.22390.85830.10710.032*
H18C0.18340.89120.22090.032*
O30.55972 (16)0.92526 (6)0.30915 (10)0.0170 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01172 (15)0.00986 (15)0.01120 (15)0.00052 (3)0.00331 (9)0.00040 (4)
O40.0170 (5)0.0116 (5)0.0144 (5)0.0012 (4)0.0056 (4)0.0013 (4)
O60.0131 (5)0.0157 (5)0.0150 (5)0.0005 (4)0.0005 (4)0.0031 (4)
O50.0266 (6)0.0130 (6)0.0197 (6)0.0034 (4)0.0109 (5)0.0007 (4)
O20.0194 (6)0.0147 (6)0.0143 (5)0.0012 (4)0.0046 (4)0.0010 (4)
O10.0182 (6)0.0116 (5)0.0149 (5)0.0012 (4)0.0063 (4)0.0003 (4)
C10.0125 (7)0.0155 (7)0.0119 (7)0.0027 (5)0.0030 (5)0.0007 (5)
C20.0139 (7)0.0139 (7)0.0136 (7)0.0005 (6)0.0031 (6)0.0008 (6)
C90.0147 (7)0.0112 (7)0.0131 (7)0.0002 (5)0.0019 (6)0.0003 (5)
N10.0111 (6)0.0121 (6)0.0150 (6)0.0006 (5)0.0010 (5)0.0010 (5)
N20.0172 (7)0.0112 (7)0.0143 (6)0.0024 (5)0.0018 (5)0.0002 (5)
C100.0114 (7)0.0129 (8)0.0157 (7)0.0001 (6)0.0014 (5)0.0021 (6)
C110.0141 (7)0.0134 (7)0.0157 (7)0.0009 (5)0.0004 (6)0.0005 (6)
C160.0124 (7)0.0150 (7)0.0168 (7)0.0017 (5)0.0014 (6)0.0012 (6)
C150.0158 (8)0.0179 (8)0.0194 (7)0.0024 (6)0.0018 (6)0.0033 (6)
C140.0210 (8)0.0155 (8)0.0246 (8)0.0075 (6)0.0030 (6)0.0022 (6)
C130.0333 (10)0.0130 (8)0.0235 (9)0.0046 (7)0.0047 (7)0.0019 (6)
C120.0232 (9)0.0154 (8)0.0160 (7)0.0037 (6)0.0014 (6)0.0023 (6)
O70.0516 (9)0.0146 (6)0.0201 (6)0.0076 (5)0.0139 (6)0.0036 (5)
C30.0188 (8)0.0181 (7)0.0126 (7)0.0007 (6)0.0024 (6)0.0002 (6)
C40.0228 (8)0.0221 (8)0.0132 (7)0.0018 (6)0.0062 (6)0.0003 (6)
C50.0241 (9)0.0175 (8)0.0193 (8)0.0017 (6)0.0094 (7)0.0029 (6)
C60.0172 (7)0.0130 (7)0.0176 (7)0.0016 (6)0.0052 (6)0.0007 (6)
C70.0223 (8)0.0145 (7)0.0216 (8)0.0026 (6)0.0082 (6)0.0023 (6)
C80.0208 (8)0.0139 (8)0.0269 (9)0.0036 (6)0.0058 (7)0.0015 (6)
S10.0125 (2)0.0178 (2)0.0127 (2)0.00100 (12)0.00257 (17)0.00274 (13)
C170.0112 (7)0.0249 (8)0.0193 (8)0.0036 (6)0.0004 (6)0.0004 (6)
C180.0202 (8)0.0185 (8)0.0249 (8)0.0069 (6)0.0021 (6)0.0019 (6)
O30.0161 (6)0.0142 (5)0.0203 (6)0.0015 (4)0.0024 (5)0.0005 (5)
Geometric parameters (Å, º) top
Mo1—N12.2343 (13)C14—C131.381 (2)
Mo1—O11.9197 (11)C14—H140.9300
Mo1—O21.7132 (11)C13—C121.406 (2)
Mo1—O31.7055 (12)C13—H130.9300
Mo1—O42.0297 (11)C12—O71.354 (2)
Mo1—O62.2928 (11)O7—H70.8200
O4—C101.3184 (19)C3—C41.370 (2)
O6—S11.5278 (12)C3—H30.9300
O5—C61.358 (2)C4—C51.391 (2)
O5—C71.4425 (19)C4—H40.9300
O1—C11.3431 (17)C5—C61.389 (2)
C1—C21.407 (2)C5—H50.9300
C1—C61.412 (2)C7—C81.505 (2)
C2—C31.408 (2)C7—H7B0.9700
C2—C91.445 (2)C7—H7A0.9700
C9—N11.286 (2)C8—H8C0.9600
C9—H90.9300C8—H8A0.9600
N1—N21.3901 (19)C8—H8B0.9600
N2—C101.307 (2)S1—C171.7840 (16)
C10—C111.459 (2)S1—C181.7886 (18)
C11—C161.406 (2)C17—H17A0.9600
C11—C121.407 (2)C17—H17C0.9600
C16—C151.379 (2)C17—H17B0.9600
C16—H160.9300C18—H18A0.9600
C15—C141.393 (2)C18—H18B0.9600
C15—H150.9300C18—H18C0.9600
O3—Mo1—O2105.31 (6)C14—C13—C12120.11 (15)
O3—Mo1—O199.24 (5)C14—C13—H13119.9
O2—Mo1—O1103.34 (5)C12—C13—H13119.9
O3—Mo1—O495.22 (5)O7—C12—C13116.61 (15)
O2—Mo1—O496.87 (5)O7—C12—C11123.54 (15)
O1—Mo1—O4150.95 (5)C13—C12—C11119.83 (15)
O3—Mo1—N194.57 (5)C12—O7—H7109.5
O2—Mo1—N1158.21 (5)C4—C3—C2120.67 (16)
O1—Mo1—N181.72 (5)C4—C3—H3119.7
O4—Mo1—N172.08 (5)C2—C3—H3119.7
O3—Mo1—O6168.91 (5)C3—C4—C5120.18 (15)
O2—Mo1—O685.12 (5)C3—C4—H4119.9
O1—Mo1—O681.61 (5)C5—C4—H4119.9
O4—Mo1—O679.54 (4)C6—C5—C4120.82 (15)
N1—Mo1—O674.56 (4)C6—C5—H5119.6
C10—O4—Mo1119.47 (10)C4—C5—H5119.6
S1—O6—Mo1119.30 (6)O5—C6—C5125.65 (14)
C6—O5—C7116.94 (12)O5—C6—C1114.85 (13)
C1—O1—Mo1138.04 (10)C5—C6—C1119.50 (14)
O1—C1—C2122.86 (14)O5—C7—C8105.92 (13)
O1—C1—C6117.71 (13)O5—C7—H7B110.6
C2—C1—C6119.40 (14)C8—C7—H7B110.6
C1—C2—C3119.41 (15)O5—C7—H7A110.6
C1—C2—C9122.85 (14)C8—C7—H7A110.6
C3—C2—C9117.59 (15)H7B—C7—H7A108.7
N1—C9—C2123.88 (14)C7—C8—H8C109.5
N1—C9—H9118.1C7—C8—H8A109.5
C2—C9—H9118.1H8C—C8—H8A109.5
C9—N1—N2115.81 (13)C7—C8—H8B109.5
C9—N1—Mo1129.04 (11)H8C—C8—H8B109.5
N2—N1—Mo1115.16 (10)H8A—C8—H8B109.5
C10—N2—N1110.69 (13)O6—S1—C17102.85 (7)
N2—C10—O4122.56 (14)O6—S1—C18105.94 (7)
N2—C10—C11119.07 (14)C17—S1—C1899.63 (9)
O4—C10—C11118.34 (14)S1—C17—H17A109.5
C16—C11—C12118.33 (14)S1—C17—H17C109.5
C16—C11—C10120.52 (13)H17A—C17—H17C109.5
C12—C11—C10121.10 (14)S1—C17—H17B109.5
C15—C16—C11121.69 (15)H17A—C17—H17B109.5
C15—C16—H16119.2H17C—C17—H17B109.5
C11—C16—H16119.2S1—C18—H18A109.5
C16—C15—C14119.28 (15)S1—C18—H18B109.5
C16—C15—H15120.4H18A—C18—H18B109.5
C14—C15—H15120.4S1—C18—H18C109.5
C13—C14—C15120.75 (15)H18A—C18—H18C109.5
C13—C14—H14119.6H18B—C18—H18C109.5
C15—C14—H14119.6
O3—Mo1—O4—C1091.49 (12)Mo1—N1—N2—C102.03 (15)
O2—Mo1—O4—C10162.37 (11)N1—N2—C10—O40.7 (2)
O1—Mo1—O4—C1028.29 (17)N1—N2—C10—C11177.19 (13)
N1—Mo1—O4—C101.64 (11)Mo1—O4—C10—N21.2 (2)
O6—Mo1—O4—C1078.65 (11)Mo1—O4—C10—C11179.08 (10)
O3—Mo1—O6—S1175.6 (2)N2—C10—C11—C16178.44 (15)
O2—Mo1—O6—S115.13 (8)O4—C10—C11—C163.6 (2)
O1—Mo1—O6—S189.16 (7)N2—C10—C11—C124.2 (2)
O4—Mo1—O6—S1113.05 (8)O4—C10—C11—C12173.75 (15)
N1—Mo1—O6—S1172.82 (8)C12—C11—C16—C151.3 (2)
O3—Mo1—O1—C179.54 (15)C10—C11—C16—C15176.14 (15)
O2—Mo1—O1—C1172.19 (14)C11—C16—C15—C141.3 (2)
O4—Mo1—O1—C139.3 (2)C16—C15—C14—C130.1 (3)
N1—Mo1—O1—C113.78 (14)C15—C14—C13—C121.0 (3)
O6—Mo1—O1—C189.27 (15)C14—C13—C12—O7177.42 (17)
Mo1—O1—C1—C29.6 (2)C14—C13—C12—C111.0 (3)
Mo1—O1—C1—C6172.29 (11)C16—C11—C12—O7178.43 (16)
O1—C1—C2—C3179.48 (14)C10—C11—C12—O71.1 (3)
C6—C1—C2—C31.4 (2)C16—C11—C12—C130.1 (2)
O1—C1—C2—C94.0 (2)C10—C11—C12—C13177.29 (16)
C6—C1—C2—C9174.13 (15)C1—C2—C3—C40.3 (2)
C1—C2—C9—N14.9 (2)C9—C2—C3—C4175.46 (16)
C3—C2—C9—N1179.57 (15)C2—C3—C4—C50.1 (3)
C2—C9—N1—N2175.26 (14)C3—C4—C5—C60.7 (3)
C2—C9—N1—Mo15.0 (2)C7—O5—C6—C53.7 (2)
O3—Mo1—N1—C987.68 (14)C7—O5—C6—C1176.88 (14)
O2—Mo1—N1—C9116.33 (17)C4—C5—C6—O5177.63 (16)
O1—Mo1—N1—C911.01 (14)C4—C5—C6—C11.8 (3)
O4—Mo1—N1—C9178.30 (15)O1—C1—C6—O50.8 (2)
O6—Mo1—N1—C994.54 (14)C2—C1—C6—O5177.36 (14)
O3—Mo1—N1—N292.03 (10)O1—C1—C6—C5179.66 (14)
O2—Mo1—N1—N263.95 (18)C2—C1—C6—C52.1 (2)
O1—Mo1—N1—N2169.27 (11)C6—O5—C7—C8177.89 (14)
O4—Mo1—N1—N21.99 (9)Mo1—O6—S1—C17177.76 (7)
O6—Mo1—N1—N285.75 (10)Mo1—O6—S1—C1878.13 (9)
C9—N1—N2—C10178.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···N20.821.872.5859 (19)145
C9—H9···O3i0.932.543.217 (2)130
C18—H18C···O3ii0.962.563.438 (2)152
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mo(C16H14N2O4)O2(C2H6OS)]
Mr504
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7527 (1), 20.6173 (4), 12.6506 (2)
β (°) 100.931 (1)
V3)1985.38 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.37 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.752, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
18375, 4556, 4485
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.120, 1.15
No. of reflections4556
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 1.68

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mo1—N12.2343 (13)Mo1—O31.7055 (12)
Mo1—O11.9197 (11)Mo1—O42.0297 (11)
Mo1—O21.7132 (11)Mo1—O62.2928 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···N20.821.872.5859 (19)145
C9—H9···O3i0.932.543.217 (2)130
C18—H18C···O3ii0.962.563.438 (2)152
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.
 

Acknowledgements

We thank the University of Malaya (grant Nos. PS378/2010B and RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375–2382.  CSD CrossRef CAS Google Scholar
First citationRajan, O. A. & Chakravorty, A. (1981). Inorg. Chem. 20, 660–664.  CrossRef CAS Google Scholar
First citationRao, S. N., Munshi, K. N., Rao, N. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyamal, A. & Maurya, M. R. (1986). Transition Met. Chem. 11, 235–238.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds