organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)benzo­nitrile

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 24 May 2011; accepted 25 May 2011; online 11 June 2011)

In the title compound, C14H11N, the dihedral angle between the mean planes of the two benzene rings is 44.6 (7)°. The crystal packing is stabilized by weak inter­molecular ππ stacking inter­actions, the centroid–centroid distances being 3.8172 (12) and 3.9349 (12) Å.

Related literature

For the synthesis of pharmaceutically active compounds, see: Gillis & Markham (1997[Gillis, J. C. & Markham, A. (1997). Drugs, 54, 885-902.]); Markham & Goa (1997[Markham, A. & Goa, K. L. (1997). Drugs, 54, 299-311.]). For related structures, see: Gerkin (1998[Gerkin, R. E. (1998). Acta Cryst. C54, 1887-1889.]); Narasegowda et al. (2005[Narasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o939-o940.]); Yathirajan et al. (2005[Yathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o1193-o1195.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N

  • Mr = 193.24

  • Orthorhombic, P 21 21 21

  • a = 7.6726 (4) Å

  • b = 11.4037 (5) Å

  • c = 12.2426 (5) Å

  • V = 1071.18 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.979, Tmax = 0.986

  • 3786 measured reflections

  • 1546 independent reflections

  • 1322 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.07

  • 1546 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C14H11N, (I), is used to synthesize various biologically active and pharmaceutical compounds viz., losartan, valsartan, candesartan, etc. (Gillis & Markham, 1997; Markham & Goa, 1997). The crystal structures of 4,4'-dimethylbiphenyl-2,2'-dicarboxylic acid (Gerkin, 1998), 4'-methylbiphenyl-2-carboxylic acid (Narasegowda et al., 2005) and 4'-(2-butyl-4-chloro-5-formylimidazol-1-ylmethyl)biphenyl-2-carbonitrile (Yathirajan et al., 2005) have been reported. In view of its importance in order to determine the conformation of this molecule, a crystal structure determination of (I) is reported.

In the title compound, C14H11N,, the dihedral angle between the mean planes of the two benzene rings is 44.6 (7)° (Fig. 1). Bond lengths and angles are in normal positions (Allen et al., 1987). Crystal packing is stabilized by weak π-π stacking interactions (Fig. 2, Table 1).

Related literature top

For the synthesis of pharmaceutically active compounds, see: Gillis & Markham (1997); Markham & Goa (1997). For related structures, see: Gerkin (1998); Narasegowda et al. (2005); Yathirajan et al. (2005). For standard bond lengths, see Allen et al. (1987).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore. X-ray quality crystals were obtained by slow evaporation of methanol solution (m.p.: 323-325 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 Å (aromatic) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (aromatic) or 1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis.
2-(4-Methylphenyl)benzonitrile top
Crystal data top
C14H11NF(000) = 408
Mr = 193.24Dx = 1.198 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2201 reflections
a = 7.6726 (4) Åθ = 3.3–32.3°
b = 11.4037 (5) ŵ = 0.07 mm1
c = 12.2426 (5) ÅT = 173 K
V = 1071.18 (9) Å3Block, colorless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
1546 independent reflections
Radiation source: Enhance (Mo) X-ray Source1322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.1500 pixels mm-1θmax = 28.3°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 715
Tmin = 0.979, Tmax = 0.986l = 1616
3786 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.1272P]
where P = (Fo2 + 2Fc2)/3
1546 reflections(Δ/σ)max = 0.008
137 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H11NV = 1071.18 (9) Å3
Mr = 193.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6726 (4) ŵ = 0.07 mm1
b = 11.4037 (5) ÅT = 173 K
c = 12.2426 (5) Å0.30 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
1546 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1322 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.017
3786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
1546 reflectionsΔρmin = 0.14 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2954 (3)0.53397 (15)0.51932 (16)0.0599 (5)
C10.2409 (3)0.45620 (16)0.56640 (15)0.0403 (4)
C20.1730 (2)0.36058 (15)0.62994 (15)0.0350 (4)
C30.1706 (3)0.37476 (16)0.74343 (15)0.0413 (4)
H3A0.21170.44560.77510.050*
C40.1091 (3)0.28649 (19)0.80918 (16)0.0484 (5)
H4A0.10600.29630.88620.058*
C50.0518 (3)0.1835 (2)0.76255 (16)0.0498 (5)
H5A0.00900.12230.80790.060*
C60.0559 (3)0.16831 (18)0.65050 (16)0.0427 (5)
H6A0.01710.09620.62020.051*
C70.1155 (2)0.25620 (15)0.58127 (13)0.0331 (4)
C80.1185 (2)0.23705 (15)0.46123 (13)0.0333 (4)
C90.1780 (3)0.13095 (16)0.41890 (16)0.0412 (4)
H9A0.21780.07150.46720.049*
C100.1798 (3)0.11109 (17)0.30733 (16)0.0459 (5)
H10A0.22110.03810.28040.055*
C110.1230 (3)0.19495 (18)0.23447 (15)0.0441 (5)
C120.0627 (3)0.30048 (18)0.27609 (16)0.0432 (5)
H12A0.02240.35950.22750.052*
C130.0604 (2)0.32112 (16)0.38739 (15)0.0383 (4)
H13A0.01830.39410.41390.046*
C140.1238 (4)0.1727 (2)0.11270 (17)0.0671 (7)
H14A0.17880.23910.07530.101*
H14B0.00380.16370.08670.101*
H14C0.18950.10090.09720.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0834 (14)0.0413 (9)0.0550 (10)0.0116 (10)0.0026 (11)0.0037 (8)
C10.0460 (10)0.0356 (8)0.0393 (9)0.0018 (9)0.0010 (9)0.0051 (8)
C20.0344 (9)0.0356 (8)0.0349 (8)0.0027 (8)0.0011 (7)0.0004 (7)
C30.0423 (10)0.0424 (9)0.0391 (10)0.0009 (9)0.0028 (8)0.0043 (8)
C40.0542 (12)0.0583 (12)0.0328 (8)0.0027 (11)0.0002 (9)0.0020 (9)
C50.0559 (12)0.0539 (11)0.0395 (9)0.0100 (11)0.0019 (9)0.0107 (9)
C60.0454 (10)0.0414 (9)0.0414 (10)0.0099 (9)0.0005 (8)0.0031 (8)
C70.0298 (8)0.0367 (8)0.0329 (8)0.0023 (8)0.0003 (7)0.0009 (7)
C80.0303 (8)0.0358 (8)0.0337 (8)0.0045 (7)0.0004 (7)0.0000 (7)
C90.0448 (10)0.0347 (9)0.0441 (10)0.0005 (8)0.0020 (9)0.0007 (8)
C100.0526 (11)0.0380 (9)0.0472 (11)0.0031 (9)0.0032 (10)0.0092 (8)
C110.0489 (11)0.0468 (10)0.0366 (8)0.0151 (10)0.0036 (9)0.0039 (8)
C120.0477 (11)0.0449 (10)0.0370 (8)0.0057 (9)0.0049 (8)0.0056 (8)
C130.0391 (9)0.0359 (8)0.0397 (9)0.0017 (8)0.0019 (8)0.0009 (8)
C140.0991 (19)0.0644 (13)0.0378 (10)0.0186 (16)0.0036 (13)0.0095 (11)
Geometric parameters (Å, º) top
N1—C11.137 (2)C8—C91.393 (2)
C1—C21.437 (2)C9—C101.385 (3)
C2—C31.399 (2)C9—H9A0.9500
C2—C71.402 (2)C10—C111.378 (3)
C3—C41.373 (3)C10—H10A0.9500
C3—H3A0.9500C11—C121.386 (3)
C4—C51.378 (3)C11—C141.512 (3)
C4—H4A0.9500C12—C131.383 (3)
C5—C61.383 (3)C12—H12A0.9500
C5—H5A0.9500C13—H13A0.9500
C6—C71.390 (2)C14—H14A0.9800
C6—H6A0.9500C14—H14B0.9800
C7—C81.486 (2)C14—H14C0.9800
C8—C131.391 (2)
N1—C1—C2177.67 (19)C10—C9—C8120.81 (17)
C3—C2—C7121.07 (17)C10—C9—H9A119.6
C3—C2—C1117.04 (16)C8—C9—H9A119.6
C7—C2—C1121.87 (15)C11—C10—C9121.45 (18)
C4—C3—C2120.14 (18)C11—C10—H10A119.3
C4—C3—H3A119.9C9—C10—H10A119.3
C2—C3—H3A119.9C10—C11—C12118.03 (17)
C3—C4—C5119.46 (17)C10—C11—C14121.3 (2)
C3—C4—H4A120.3C12—C11—C14120.6 (2)
C5—C4—H4A120.3C13—C12—C11120.95 (18)
C4—C5—C6120.7 (2)C13—C12—H12A119.5
C4—C5—H5A119.6C11—C12—H12A119.5
C6—C5—H5A119.6C12—C13—C8121.25 (17)
C5—C6—C7121.45 (19)C12—C13—H13A119.4
C5—C6—H6A119.3C8—C13—H13A119.4
C7—C6—H6A119.3C11—C14—H14A109.5
C6—C7—C2117.15 (15)C11—C14—H14B109.5
C6—C7—C8120.14 (16)H14A—C14—H14B109.5
C2—C7—C8122.70 (15)C11—C14—H14C109.5
C13—C8—C9117.51 (16)H14A—C14—H14C109.5
C13—C8—C7122.45 (16)H14B—C14—H14C109.5
C9—C8—C7120.03 (16)
C7—C2—C3—C41.0 (3)C6—C7—C8—C943.5 (2)
C1—C2—C3—C4179.36 (18)C2—C7—C8—C9135.8 (2)
C2—C3—C4—C50.8 (3)C13—C8—C9—C100.4 (3)
C3—C4—C5—C60.1 (3)C7—C8—C9—C10179.27 (18)
C4—C5—C6—C70.8 (3)C8—C9—C10—C110.1 (3)
C5—C6—C7—C20.6 (3)C9—C10—C11—C120.3 (3)
C5—C6—C7—C8179.9 (2)C9—C10—C11—C14179.5 (2)
C3—C2—C7—C60.3 (3)C10—C11—C12—C130.3 (3)
C1—C2—C7—C6178.58 (18)C14—C11—C12—C13179.5 (2)
C3—C2—C7—C8179.05 (18)C11—C12—C13—C80.1 (3)
C1—C2—C7—C80.7 (3)C9—C8—C13—C120.5 (3)
C6—C7—C8—C13135.2 (2)C7—C8—C13—C12179.24 (17)
C2—C7—C8—C1345.5 (3)

Experimental details

Crystal data
Chemical formulaC14H11N
Mr193.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.6726 (4), 11.4037 (5), 12.2426 (5)
V3)1071.18 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3786, 1546, 1322
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.07
No. of reflections1546
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parmeters (Å): π-π stacking interactions, Cg1 and Cg2 are the centroids of rings C2—C7 and C8—C13. Symmetry codes: (i) -1/2+x, 1/2-y, 1-z; (ii) 1/2+x, 1/2-y, 1-z. top
CgI···CgJCg···Cg (Å)CgI Perp (Å)Cgj Perp (Å)
Cg1···Cg2i3.8172 (12)3.5763 (8)-3.5789 (8)
Cg2···Cg1ii3.9349 (12)-3.5230 (8)3.5154 (8)
 

Acknowledgements

MSS thanks the University of Mysore for the research facilities and R. L. Fine Chem, Bangalore, India, for the gift of the sample. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationGerkin, R. E. (1998). Acta Cryst. C54, 1887–1889.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGillis, J. C. & Markham, A. (1997). Drugs, 54, 885–902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkham, A. & Goa, K. L. (1997). Drugs, 54, 299–311.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNarasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o939–o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o1193–o1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds