metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m887-m888

Bis­(4-fluoro­benzoato)-κ2O,O′;κO-(4-fluoro­benzoic acid-κO)bis­­(nico­tinamide-κN1)copper(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 26 May 2011; accepted 31 May 2011; online 11 June 2011)

In the title CuII complex, [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2], the CuII cation is coordinated by two N atoms of two nicotinamide (NA) ligands, and by four O atoms from two 4-fluoro­benzoate (PFB) anions and one 4-fluoro­benzoic acid (PFBA) mol­ecule, in a distorted octa­hedral geometry. In the mol­ecule, two Cu—O bond lengths are significantly longer than the other two. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 11.08 (14), 7.62 (13) and 5.73 (11)°, while the benzene rings are oriented at dihedral angles of 15.62 (6), 33.71 (8) and 26.60 (8)°. In the crystal structure, extensive N—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between the benzene rings [centroid-to-centroid distances = 3.5517 (15), 3.8456 (14) and 3.9265 (13) Å] further stabilize the crystal structure.

Related literature

For background literature on niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek et al. (2010a[Hökelek, T., Dal, H., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m891-m892.],b[Hökelek, T., Dal, H., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m910-m911.],c[Hökelek, T., Saka, G., Tercan, B., Çimen, E. & Necefoğlu, H. (2010c). Acta Cryst. E66, m955-m956.],d[Hökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010d). Acta Cryst. E66, m1135-m1136.],e[Hökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010e). Acta Cryst. E66, m784-m785.]); Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365-m1366.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m651-m652.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2]

  • Mr = 726.12

  • Triclinic, [P \overline 1]

  • a = 10.3370 (2) Å

  • b = 11.6707 (3) Å

  • c = 14.1121 (4) Å

  • α = 110.824 (4)°

  • β = 101.333 (3)°

  • γ = 95.761 (2)°

  • V = 1533.09 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.48 × 0.32 × 0.24 mm

Data collection
  • Bruker APEXII Kappa CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.745, Tmax = 0.827

  • 27657 measured reflections

  • 7686 independent reflections

  • 6584 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.08

  • 7686 reflections

  • 461 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 2.0661 (13)
Cu1—O2 2.4581 (14)
Cu1—O3 2.2397 (14)
Cu1—O5 1.9701 (14)
Cu1—N1 2.0024 (15)
Cu1—N3 2.0084 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O7i 0.83 (3) 2.17 (4) 2.990 (3) 175 (3)
N2—H2B⋯O2ii 0.90 (3) 2.07 (3) 2.943 (2) 163 (3)
N4—H4A⋯O1iii 0.79 (3) 2.18 (3) 2.953 (2) 165 (3)
N4—H4B⋯O8iv 0.80 (3) 2.08 (3) 2.880 (3) 174 (2)
O4—H41⋯O6 0.85 (3) 1.62 (3) 2.457 (2) 169 (3)
C4—H4⋯F2v 0.93 2.50 3.248 (3) 137
C23—H23⋯O2ii 0.93 2.42 3.333 (2) 167
C25—H25⋯O8vi 0.93 2.60 3.275 (2) 130
C31—H31⋯O7vii 0.93 2.55 3.251 (3) 132
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z; (iv) -x, -y+1, -z; (v) -x, -y-1, -z; (vi) x, y-1, z; (vii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title mononuclear CuII complex, (I), (Fig. 1), consisting of two nicotinamide (NA), two 4-fluorobenzoate (PFB) and one 4-fluorobenzoic acid (PFBA) ligands. The CuII center is coordinated by four O atoms from two (PFB) and one (PFBA) ligands, which act in different modes - monodentate, bidentate and monodentate, respectively, and two N atoms of two nicotinamide ligands (Fig. 1). So that, the molecule is six-coordinated. The structures of similar complexes of CuII, CoII, NiII and ZnII ions, [Cu(C8H7O2)2(C6H6N2O)2].2(H2O), (II) (Hökelek et al., 2010c), [Co(C8H7O3)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2010e), [Co(C8H7O3)2(C6H6N2O)2(H2O)2].2H2O, (IV) (Hökelek et al., 2010b), [Ni(C8H7O3)2(C6H6N2O)2(H2O)2].2H2O, (V) (Hökelek et al., 2010a), [Zn(C8H8NO2)2(C6H6N2O)2].H2O, (VI) (Hökelek et al., 2009a), [Zn(C9H10NO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009b) and [Zn(C8H7O3)2(C6H6N2O)2], (VIII) (Hökelek et al., 2010d) have also been determined.

In the title compound (Fig. 1), two Cu—O bond distances [2.4581 (14) and 2.2397 (14) Å] are significantly longer than the other two, and the average Cu—O bond length is 2.1835 (14) Å. The Cu1 atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2), (O3/C8/O4) and (O5/C15/O6) by 0.0717 (3), 0.6121 (3) and 0.7391 (3) Å, respectively. The intramolecular O—H···O hydrogen bond links the monodentately coordinated (PFB) and (PFBA) ligands (Table 1). The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2–C7), B (C9–C14) and C (C16–C21) are 11.08 (14), 7.62 (13) and 5.73 (11)°, respectively, while those between rings A, B, C, D (N1/C22–C26), E (N3/C28–C32) and F (Cu1/O1/C1/O2) are A/B = 15.62 (6), A/C = 33.71 (8), A/D = 78.60 (6), A/E = 81.00 (6), A/F = 11.19 (6), B/C = 26.60 (8), B/D = 70.02 (6), B/E = 86.56 (6), B/F = 23.92 (6), C/D = 44.98 (6), C/E = 66.30 (6), C/F = 32.33 (6), D/E = 26.76 (6) and D/F = 75.15 (5)°.

In (I), the O1—Cu1—O2 angle is 57.75 (2)°. The corresponding O—M—O (where M is a metal) angles are 60.32 (4)° in (III), 59.02 (8)° in (VI), 60.03 (6)° in (VII), 57.53 (5)°, 56.19 (5)° and 59.04 (4)° in (VIII) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(IX); Greenaway et al., 1984].

In the crystal structure, intermolecular N—H···O, C—H···F and C—H···O hydrogen bonds link the molecules into a three-dimensional network (Table 1 and Fig. 2). The ππ contacts between the benzene rings, Cg1–Cg1i, Cg1–Cg2ii and Cg2–Cg3iii [symmetry codes: (i) 1 - x, -y, -z, (ii) 1 + x, y, z, (iii) -x, -y, 1 - z, where Cg1, Cg2 and Cg3 are the centroids of the rings A (C2–C7), B (C9–C14) and C (C16–C21), respectively] may also stabilize the structure, with centroid–centroid distances of 3.5517 (15), 3.8456 (14) and 3.9265 (13) Å, respectively.

Related literature top

For background literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek et al. (2010a,b,c,d,e); Hökelek et al. (2009a,b).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.23 g, 5 mmol) in H2O (20 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-fluorobenzoate (1.62 g, 10 mmol) in H2O (50 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one month, giving blue single crystals.

Refinement top

Atoms H2A, H2B, H4A and H4B (for NH2 groups) and H41 (for OH group) were located in a difference Fourier map and were freely refined. The C-bound H atoms were positioned geometrically with C—H = 0.95 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O—H···O hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Only the N—H···O hydrogen bonds are shown as dashed lines. [H atoms not involved in hydrogen bonding have been omitted for clarity].
Bis(4-fluorobenzoato)-κ2O,O';κO-(4-fluorobenzoic acid-κO)bis(nicotinamide-κN1)copper(II) top
Crystal data top
[Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2]Z = 2
Mr = 726.12F(000) = 742
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3370 (2) ÅCell parameters from 9894 reflections
b = 11.6707 (3) Åθ = 2.5–28.4°
c = 14.1121 (4) ŵ = 0.79 mm1
α = 110.824 (4)°T = 100 K
β = 101.333 (3)°Block, blue
γ = 95.761 (2)°0.48 × 0.32 × 0.24 mm
V = 1533.09 (8) Å3
Data collection top
Bruker APEXII Kappa CCD area-detector
diffractometer
7686 independent reflections
Radiation source: fine-focus sealed tube6584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1312
Tmin = 0.745, Tmax = 0.827k = 1515
27657 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0247P)2 + 1.9077P]
where P = (Fo2 + 2Fc2)/3
7686 reflections(Δ/σ)max < 0.001
461 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.53 e Å3
Crystal data top
[Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2]γ = 95.761 (2)°
Mr = 726.12V = 1533.09 (8) Å3
Triclinic, P1Z = 2
a = 10.3370 (2) ÅMo Kα radiation
b = 11.6707 (3) ŵ = 0.79 mm1
c = 14.1121 (4) ÅT = 100 K
α = 110.824 (4)°0.48 × 0.32 × 0.24 mm
β = 101.333 (3)°
Data collection top
Bruker APEXII Kappa CCD area-detector
diffractometer
7686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6584 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.827Rint = 0.031
27657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.59 e Å3
7686 reflectionsΔρmin = 0.53 e Å3
461 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13629 (2)0.00940 (2)0.301857 (18)0.01112 (7)
O10.21519 (13)0.08538 (12)0.17898 (10)0.0128 (3)
O20.37085 (14)0.06815 (12)0.30046 (11)0.0147 (3)
O30.06751 (14)0.11248 (13)0.23335 (11)0.0162 (3)
O40.19206 (16)0.02059 (14)0.34144 (13)0.0243 (3)
H410.136 (3)0.048 (2)0.367 (3)0.056*
O50.15186 (15)0.14357 (13)0.43863 (11)0.0181 (3)
O60.05429 (16)0.19004 (14)0.42197 (13)0.0258 (4)
O70.36816 (15)0.47531 (13)0.40855 (12)0.0205 (3)
O80.08320 (16)0.47994 (13)0.11418 (12)0.0240 (3)
N10.19980 (16)0.10554 (14)0.37023 (12)0.0121 (3)
N20.49317 (18)0.32379 (16)0.55914 (14)0.0166 (4)
H2A0.532 (3)0.377 (3)0.572 (2)0.036 (8)*
H2B0.517 (3)0.243 (3)0.602 (2)0.037 (8)*
N30.09164 (16)0.12271 (14)0.22622 (13)0.0121 (3)
N40.05759 (19)0.33049 (17)0.02899 (14)0.0180 (4)
H4A0.094 (3)0.260 (3)0.061 (2)0.019 (6)*
H4B0.070 (2)0.380 (2)0.056 (2)0.022 (6)*
F10.71007 (14)0.12837 (14)0.02727 (11)0.0314 (3)
F20.56952 (14)0.53850 (12)0.11468 (12)0.0331 (3)
F30.28179 (16)0.69704 (12)0.76409 (12)0.0398 (4)
C10.33457 (19)0.02071 (17)0.21304 (15)0.0123 (4)
C20.4321 (2)0.05193 (17)0.14653 (15)0.0137 (4)
C30.4058 (2)0.16158 (18)0.05765 (16)0.0168 (4)
H30.32520.21720.03770.020*
C40.4999 (2)0.1880 (2)0.00125 (17)0.0218 (4)
H40.48350.26100.06070.026*
C50.6176 (2)0.1036 (2)0.03036 (18)0.0214 (4)
C60.6464 (2)0.0058 (2)0.11703 (18)0.0219 (4)
H60.72660.06160.13570.026*
C70.5526 (2)0.03054 (18)0.17561 (17)0.0175 (4)
H70.57050.10340.23530.021*
C80.1680 (2)0.11385 (18)0.26792 (15)0.0155 (4)
C90.2758 (2)0.22678 (18)0.22622 (16)0.0160 (4)
C100.2572 (2)0.33826 (19)0.15506 (17)0.0202 (4)
H100.17780.34170.13330.024*
C110.3561 (2)0.4443 (2)0.11633 (18)0.0243 (5)
H110.34410.51940.06930.029*
C120.4729 (2)0.4351 (2)0.14966 (18)0.0222 (4)
C130.4959 (2)0.3259 (2)0.21821 (17)0.0210 (4)
H130.57670.32240.23770.025*
C140.3952 (2)0.22134 (19)0.25738 (16)0.0178 (4)
H140.40770.14680.30500.021*
C150.0698 (2)0.21594 (18)0.46296 (16)0.0168 (4)
C160.1269 (2)0.34387 (18)0.54508 (16)0.0161 (4)
C170.0416 (2)0.42600 (19)0.57831 (17)0.0202 (4)
H170.05070.40060.55070.024*
C180.0935 (2)0.5457 (2)0.65259 (18)0.0255 (5)
H180.03720.60130.67570.031*
C190.2303 (2)0.57979 (19)0.69091 (17)0.0249 (5)
C200.3180 (2)0.5021 (2)0.65898 (17)0.0226 (4)
H200.41030.52890.68580.027*
C210.2647 (2)0.38235 (19)0.58543 (16)0.0187 (4)
H210.32180.32740.56300.022*
C220.2985 (2)0.06282 (17)0.45817 (15)0.0139 (4)
H220.32340.02290.49550.017*
C230.3654 (2)0.14142 (17)0.49619 (15)0.0147 (4)
H230.43320.10880.55790.018*
C240.32900 (19)0.26950 (17)0.44009 (15)0.0123 (4)
C250.2243 (2)0.31342 (17)0.35045 (15)0.0147 (4)
H250.19630.39870.31230.018*
C260.1621 (2)0.22944 (17)0.31836 (15)0.0144 (4)
H260.09130.25990.25860.017*
C270.3992 (2)0.36452 (17)0.46928 (15)0.0139 (4)
C280.00464 (19)0.08500 (17)0.13710 (15)0.0127 (4)
H280.05640.00550.11210.015*
C290.03050 (19)0.15950 (17)0.08046 (15)0.0133 (4)
H290.09960.13120.01970.016*
C300.04892 (19)0.27753 (17)0.11612 (15)0.0126 (4)
C310.1513 (2)0.31490 (17)0.20657 (16)0.0147 (4)
H310.20750.39220.23130.018*
C320.1690 (2)0.23614 (17)0.25979 (15)0.0141 (4)
H320.23690.26260.32110.017*
C330.0257 (2)0.37055 (17)0.06562 (16)0.0154 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01402 (12)0.00961 (11)0.01052 (12)0.00377 (8)0.00219 (9)0.00485 (8)
O10.0124 (7)0.0113 (6)0.0131 (7)0.0005 (5)0.0013 (5)0.0043 (5)
O20.0155 (7)0.0117 (6)0.0130 (7)0.0006 (5)0.0008 (6)0.0024 (5)
O30.0151 (7)0.0160 (7)0.0175 (7)0.0018 (5)0.0030 (6)0.0074 (6)
O40.0235 (8)0.0179 (7)0.0240 (8)0.0022 (6)0.0084 (7)0.0005 (6)
O50.0260 (8)0.0143 (7)0.0133 (7)0.0089 (6)0.0033 (6)0.0041 (6)
O60.0199 (8)0.0154 (7)0.0327 (9)0.0009 (6)0.0035 (7)0.0006 (6)
O70.0236 (8)0.0110 (6)0.0198 (8)0.0033 (6)0.0060 (6)0.0036 (6)
O80.0351 (9)0.0116 (7)0.0188 (8)0.0032 (6)0.0073 (7)0.0078 (6)
N10.0147 (8)0.0118 (7)0.0111 (8)0.0038 (6)0.0036 (6)0.0052 (6)
N20.0185 (9)0.0111 (8)0.0168 (9)0.0033 (7)0.0033 (7)0.0053 (7)
N30.0127 (8)0.0110 (7)0.0133 (8)0.0033 (6)0.0028 (6)0.0053 (6)
N40.0256 (10)0.0099 (8)0.0158 (9)0.0006 (7)0.0027 (8)0.0071 (7)
F10.0269 (7)0.0399 (8)0.0329 (8)0.0128 (6)0.0196 (6)0.0125 (6)
F20.0289 (8)0.0209 (7)0.0419 (9)0.0082 (6)0.0086 (7)0.0067 (6)
F30.0500 (10)0.0157 (6)0.0340 (8)0.0035 (6)0.0018 (7)0.0045 (6)
C10.0146 (9)0.0109 (8)0.0121 (9)0.0033 (7)0.0013 (7)0.0063 (7)
C20.0150 (9)0.0139 (9)0.0143 (9)0.0045 (7)0.0032 (8)0.0076 (7)
C30.0164 (10)0.0172 (9)0.0149 (10)0.0026 (8)0.0021 (8)0.0051 (8)
C40.0250 (11)0.0230 (10)0.0164 (11)0.0088 (9)0.0054 (9)0.0053 (8)
C50.0213 (11)0.0276 (11)0.0229 (11)0.0122 (9)0.0116 (9)0.0132 (9)
C60.0176 (10)0.0219 (10)0.0307 (12)0.0043 (8)0.0095 (9)0.0132 (9)
C70.0175 (10)0.0137 (9)0.0202 (11)0.0013 (7)0.0048 (8)0.0055 (8)
C80.0170 (10)0.0163 (9)0.0131 (9)0.0023 (8)0.0008 (8)0.0074 (8)
C90.0171 (10)0.0153 (9)0.0154 (10)0.0004 (7)0.0018 (8)0.0074 (8)
C100.0197 (11)0.0185 (10)0.0214 (11)0.0013 (8)0.0064 (9)0.0064 (8)
C110.0276 (12)0.0171 (10)0.0238 (12)0.0003 (9)0.0068 (10)0.0038 (9)
C120.0200 (11)0.0183 (10)0.0249 (12)0.0051 (8)0.0020 (9)0.0084 (9)
C130.0166 (10)0.0248 (11)0.0232 (11)0.0018 (8)0.0047 (9)0.0118 (9)
C140.0203 (10)0.0174 (9)0.0166 (10)0.0045 (8)0.0044 (8)0.0075 (8)
C150.0238 (11)0.0132 (9)0.0144 (10)0.0035 (8)0.0065 (8)0.0055 (8)
C160.0218 (10)0.0134 (9)0.0149 (10)0.0042 (8)0.0076 (8)0.0056 (8)
C170.0205 (11)0.0178 (10)0.0193 (11)0.0030 (8)0.0069 (9)0.0027 (8)
C180.0311 (13)0.0159 (10)0.0261 (12)0.0077 (9)0.0092 (10)0.0021 (9)
C190.0357 (13)0.0126 (9)0.0188 (11)0.0009 (9)0.0018 (10)0.0013 (8)
C200.0211 (11)0.0219 (10)0.0209 (11)0.0028 (8)0.0004 (9)0.0080 (9)
C210.0216 (11)0.0184 (10)0.0176 (10)0.0050 (8)0.0066 (9)0.0073 (8)
C220.0182 (10)0.0108 (8)0.0113 (9)0.0028 (7)0.0026 (8)0.0030 (7)
C230.0170 (10)0.0126 (8)0.0113 (9)0.0014 (7)0.0013 (8)0.0038 (7)
C240.0133 (9)0.0120 (8)0.0133 (9)0.0034 (7)0.0037 (8)0.0065 (7)
C250.0166 (10)0.0106 (8)0.0162 (10)0.0017 (7)0.0022 (8)0.0053 (7)
C260.0145 (9)0.0130 (9)0.0127 (9)0.0007 (7)0.0010 (8)0.0043 (7)
C270.0145 (9)0.0111 (8)0.0158 (10)0.0027 (7)0.0014 (8)0.0059 (7)
C280.0130 (9)0.0101 (8)0.0141 (9)0.0011 (7)0.0027 (8)0.0041 (7)
C290.0131 (9)0.0135 (9)0.0116 (9)0.0019 (7)0.0002 (7)0.0047 (7)
C300.0150 (9)0.0103 (8)0.0127 (9)0.0032 (7)0.0030 (8)0.0048 (7)
C310.0152 (10)0.0100 (8)0.0173 (10)0.0011 (7)0.0015 (8)0.0049 (7)
C320.0138 (9)0.0125 (8)0.0131 (9)0.0020 (7)0.0013 (8)0.0039 (7)
C330.0202 (10)0.0119 (8)0.0141 (10)0.0019 (7)0.0017 (8)0.0065 (7)
Geometric parameters (Å, º) top
Cu1—O12.0661 (13)C9—C101.391 (3)
Cu1—O22.4581 (14)C9—C141.389 (3)
Cu1—O32.2397 (14)C10—C111.386 (3)
Cu1—O51.9701 (14)C10—H100.9300
Cu1—N12.0024 (15)C11—C121.380 (3)
Cu1—N32.0084 (15)C11—H110.9300
O1—C11.283 (2)C13—C121.375 (3)
O2—C11.252 (2)C13—C141.384 (3)
O3—C81.233 (2)C13—H130.9300
O4—C81.294 (2)C14—H140.9300
O4—H410.855 (18)C16—C151.498 (3)
O5—C151.266 (2)C16—C171.389 (3)
O6—C151.256 (3)C16—C211.387 (3)
O7—C271.237 (2)C17—H170.9300
O8—C331.232 (2)C18—C171.388 (3)
N1—C221.338 (3)C18—H180.9300
N1—C261.342 (2)C19—C181.372 (3)
N2—C271.331 (3)C20—C191.372 (3)
N2—H2A0.83 (3)C20—C211.387 (3)
N2—H2B0.89 (3)C20—H200.9300
N3—C281.339 (2)C21—H210.9300
N3—C321.345 (2)C22—H220.9300
N4—C331.329 (3)C23—C221.393 (3)
N4—H4A0.79 (3)C23—C241.390 (3)
N4—H4B0.81 (3)C23—H230.9300
F1—C51.361 (2)C24—C271.515 (2)
F2—C121.356 (2)C25—C241.387 (3)
F3—C191.362 (2)C25—C261.381 (3)
C1—C21.494 (3)C25—H250.9300
C2—C31.393 (3)C26—H260.9300
C2—C71.388 (3)C28—C291.387 (2)
C3—H30.9300C28—H280.9300
C4—C31.388 (3)C29—H290.9300
C4—C51.372 (3)C30—C311.385 (3)
C4—H40.9300C30—C291.394 (3)
C6—C51.373 (3)C31—C321.383 (3)
C6—C71.381 (3)C31—H310.9300
C6—H60.9300C32—H320.9300
C7—H70.9300C33—C301.510 (2)
C9—C81.490 (3)
O1—Cu1—O395.03 (5)C12—C13—C14118.1 (2)
O1—Cu1—O257.75 (5)C12—C13—H13120.9
O5—Cu1—O1151.82 (6)C14—C13—H13120.9
O5—Cu1—O3113.15 (6)C9—C14—H14119.7
O5—Cu1—N191.60 (6)C13—C14—C9120.56 (19)
O5—Cu1—N391.70 (6)C13—C14—H14119.7
N1—Cu1—O187.92 (6)O5—C15—C16116.89 (19)
N1—Cu1—O390.60 (6)O6—C15—O5125.26 (19)
N1—Cu1—N3173.23 (7)O6—C15—C16117.83 (18)
N3—Cu1—O186.39 (6)C17—C16—C15119.70 (19)
N3—Cu1—O393.54 (6)C21—C16—C15120.46 (18)
C1—O1—Cu198.92 (11)C21—C16—C17119.79 (19)
C8—O3—Cu1131.63 (13)C16—C17—H17119.9
C8—O4—H41118 (2)C18—C17—C16120.3 (2)
C15—O5—Cu1127.21 (13)C18—C17—H17119.9
C22—N1—Cu1120.76 (13)C17—C18—H18121.0
C22—N1—C26118.27 (16)C19—C18—C17118.1 (2)
C26—N1—Cu1119.79 (13)C19—C18—H18121.0
C27—N2—H2A116 (2)F3—C19—C18118.3 (2)
C27—N2—H2B123.0 (18)F3—C19—C20118.2 (2)
H2A—N2—H2B121 (3)C18—C19—C20123.4 (2)
C28—N3—Cu1122.20 (12)C19—C20—C21117.9 (2)
C28—N3—C32118.18 (16)C19—C20—H20121.1
C32—N3—Cu1119.29 (13)C21—C20—H20121.1
C33—N4—H4A123.1 (18)C16—C21—H21119.7
C33—N4—H4B118.4 (18)C20—C21—C16120.6 (2)
H4A—N4—H4B118 (3)C20—C21—H21119.7
O1—C1—C2119.12 (17)N1—C22—C23122.71 (17)
O2—C1—O1121.48 (18)N1—C22—H22118.6
O2—C1—C2119.40 (17)C23—C22—H22118.6
C3—C2—C1121.88 (18)C22—C23—H23120.7
C7—C2—C1118.57 (18)C24—C23—C22118.69 (18)
C7—C2—C3119.54 (19)C24—C23—H23120.7
C2—C3—H3119.9C23—C24—C27123.94 (17)
C4—C3—C2120.1 (2)C25—C24—C23118.34 (17)
C4—C3—H3119.9C25—C24—C27117.70 (17)
C3—C4—H4120.8C24—C25—H25120.3
C5—C4—C3118.3 (2)C26—C25—C24119.47 (18)
C5—C4—H4120.8C26—C25—H25120.3
F1—C5—C4118.8 (2)N1—C26—C25122.45 (18)
F1—C5—C6118.1 (2)N1—C26—H26118.8
C4—C5—C6123.2 (2)C25—C26—H26118.8
C5—C6—C7118.0 (2)O7—C27—N2123.15 (17)
C5—C6—H6121.0O7—C27—C24118.91 (17)
C7—C6—H6121.0N2—C27—C24117.93 (17)
C2—C7—H7119.6N3—C28—C29122.77 (17)
C6—C7—C2120.9 (2)N3—C28—H28118.6
C6—C7—H7119.6C29—C28—H28118.6
O3—C8—O4124.89 (19)C28—C29—C30118.84 (18)
O3—C8—C9121.66 (18)C28—C29—H29120.6
O4—C8—C9113.45 (18)C30—C29—H29120.6
C10—C9—C8119.82 (19)C29—C30—C33124.01 (17)
C14—C9—C8120.45 (18)C31—C30—C29118.32 (17)
C14—C9—C10119.73 (19)C31—C30—C33117.58 (17)
C9—C10—H10119.8C30—C31—H31120.3
C11—C10—C9120.4 (2)C32—C31—C30119.37 (18)
C11—C10—H10119.8C32—C31—H31120.3
C10—C11—H11121.0N3—C32—C31122.47 (18)
C12—C11—C10118.0 (2)N3—C32—H32118.8
C12—C11—H11121.0C31—C32—H32118.8
F2—C12—C11118.9 (2)O8—C33—N4123.07 (18)
F2—C12—C13118.0 (2)O8—C33—C30118.78 (17)
C13—C12—C11123.1 (2)N4—C33—C30118.15 (17)
O3—Cu1—O1—C1179.56 (10)C7—C6—C5—C41.0 (3)
O5—Cu1—O1—C10.34 (17)C5—C6—C7—C21.1 (3)
N1—Cu1—O1—C189.15 (11)C10—C9—C8—O37.4 (3)
N3—Cu1—O1—C187.19 (11)C10—C9—C8—O4173.04 (18)
O1—Cu1—O3—C8176.08 (16)C14—C9—C8—O3172.14 (18)
O5—Cu1—O3—C83.87 (18)C14—C9—C8—O47.4 (3)
N1—Cu1—O3—C888.12 (17)C8—C9—C10—C11179.4 (2)
N3—Cu1—O3—C897.24 (17)C14—C9—C10—C111.0 (3)
O1—Cu1—O5—C15133.63 (16)C8—C9—C14—C13179.55 (19)
O3—Cu1—O5—C1546.47 (17)C10—C9—C14—C130.0 (3)
N1—Cu1—O5—C15137.80 (17)C9—C10—C11—C120.7 (3)
N3—Cu1—O5—C1548.11 (17)C10—C11—C12—F2178.4 (2)
O1—Cu1—N1—C22112.45 (15)C10—C11—C12—C130.7 (3)
O1—Cu1—N1—C2654.95 (15)C14—C13—C12—F2177.43 (19)
O3—Cu1—N1—C22152.53 (15)C14—C13—C12—C111.7 (3)
O3—Cu1—N1—C2640.06 (15)C12—C13—C14—C91.3 (3)
O5—Cu1—N1—C2239.36 (15)C17—C16—C15—O5177.41 (19)
O5—Cu1—N1—C26153.23 (15)C17—C16—C15—O64.4 (3)
O1—Cu1—N3—C2870.36 (15)C21—C16—C15—O54.9 (3)
O1—Cu1—N3—C32102.90 (15)C21—C16—C15—O6173.34 (19)
O3—Cu1—N3—C2824.46 (15)C15—C16—C17—C18178.52 (19)
O3—Cu1—N3—C32162.27 (14)C21—C16—C17—C180.8 (3)
O5—Cu1—N3—C28137.78 (15)C15—C16—C21—C20177.92 (19)
O5—Cu1—N3—C3248.95 (15)C17—C16—C21—C200.2 (3)
Cu1—O1—C1—O22.02 (18)C19—C18—C17—C160.4 (3)
Cu1—O1—C1—C2177.69 (13)F3—C19—C18—C17179.8 (2)
Cu1—O3—C8—O421.5 (3)C20—C19—C18—C170.6 (4)
Cu1—O3—C8—C9159.07 (13)C21—C20—C19—F3179.21 (19)
Cu1—O5—C15—O628.1 (3)C21—C20—C19—C181.1 (3)
Cu1—O5—C15—C16149.96 (14)C19—C20—C21—C160.7 (3)
Cu1—N1—C22—C23165.88 (15)C24—C23—C22—N10.5 (3)
C26—N1—C22—C231.7 (3)C22—C23—C24—C252.1 (3)
Cu1—N1—C26—C25165.40 (15)C22—C23—C24—C27176.20 (18)
C22—N1—C26—C252.3 (3)C23—C24—C27—O7172.7 (2)
Cu1—N3—C28—C29175.61 (14)C23—C24—C27—N26.4 (3)
C32—N3—C28—C292.3 (3)C25—C24—C27—O75.6 (3)
Cu1—N3—C32—C31174.44 (15)C25—C24—C27—N2175.24 (18)
C28—N3—C32—C310.9 (3)C26—C25—C24—C231.6 (3)
O1—C1—C2—C311.5 (3)C26—C25—C24—C27176.86 (18)
O1—C1—C2—C7169.33 (17)C24—C25—C26—N10.7 (3)
O2—C1—C2—C3168.76 (17)N3—C28—C29—C301.6 (3)
O2—C1—C2—C710.4 (3)C31—C30—C29—C280.5 (3)
C1—C2—C3—C4179.11 (18)C33—C30—C29—C28175.99 (18)
C7—C2—C3—C40.0 (3)C29—C30—C31—C321.8 (3)
C1—C2—C7—C6179.76 (18)C33—C30—C31—C32174.95 (18)
C3—C2—C7—C60.6 (3)C30—C31—C32—N31.1 (3)
C5—C4—C3—C20.1 (3)O8—C33—C30—C29165.5 (2)
C3—C4—C5—F1179.61 (18)O8—C33—C30—C3110.9 (3)
C3—C4—C5—C60.4 (3)N4—C33—C30—C2913.6 (3)
C7—C6—C5—F1179.78 (18)N4—C33—C30—C31169.95 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.83 (3)2.17 (4)2.990 (3)175 (3)
N2—H2B···O2ii0.90 (3)2.07 (3)2.943 (2)163 (3)
N4—H4A···O1iii0.79 (3)2.18 (3)2.953 (2)165 (3)
N4—H4B···O8iv0.80 (3)2.08 (3)2.880 (3)174 (2)
O4—H41···O60.85 (3)1.62 (3)2.457 (2)169 (3)
C4—H4···F2v0.932.503.248 (3)137
C23—H23···O2ii0.932.423.333 (2)167
C25—H25···O8vi0.932.603.275 (2)130
C31—H31···O7vii0.932.553.251 (3)132
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1; (iii) x, y, z; (iv) x, y+1, z; (v) x, y1, z; (vi) x, y1, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2]
Mr726.12
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.3370 (2), 11.6707 (3), 14.1121 (4)
α, β, γ (°)110.824 (4), 101.333 (3), 95.761 (2)
V3)1533.09 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.48 × 0.32 × 0.24
Data collection
DiffractometerBruker APEXII Kappa CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.745, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
27657, 7686, 6584
Rint0.031
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.08
No. of reflections7686
No. of parameters461
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O12.0661 (13)Cu1—O51.9701 (14)
Cu1—O22.4581 (14)Cu1—N12.0024 (15)
Cu1—O32.2397 (14)Cu1—N32.0084 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.83 (3)2.17 (4)2.990 (3)175 (3)
N2—H2B···O2ii0.90 (3)2.07 (3)2.943 (2)163 (3)
N4—H4A···O1iii0.79 (3)2.18 (3)2.953 (2)165 (3)
N4—H4B···O8iv0.80 (3)2.08 (3)2.880 (3)174 (2)
O4—H41···O60.85 (3)1.62 (3)2.457 (2)169 (3)
C4—H4···F2v0.932.503.248 (3)137
C23—H23···O2ii0.932.423.333 (2)167
C25—H25···O8vi0.932.603.275 (2)130
C31—H31···O7vii0.932.553.251 (3)132
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1; (iii) x, y, z; (iv) x, y+1, z; (v) x, y1, z; (vi) x, y1, z; (vii) x, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was financially supported by the Scientific and Technological Research Council of Turkey (grant No. 108T657).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m891–m892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m910–m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Saka, G., Tercan, B., Çimen, E. & Necefoğlu, H. (2010c). Acta Cryst. E66, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010d). Acta Cryst. E66, m1135–m1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010e). Acta Cryst. E66, m784–m785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m887-m888
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds