organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,7-Di­methyl-4-oxo-1,3-thia­zolo[4,5-d]pyridazin-5-yl)benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 May 2011; accepted 2 June 2011; online 18 June 2011)

The thia­zole–pyridazine fused-ring system of the title compound, C13H12N4O3S2, is approximately planar (r.m.s. deviation = 0.037 Å); the benzene ring connected to the fused-ring system through the N atom is twisted by 39.3 (1)°. The amine group uses an H atom to form a hydrogen bond to the ketonic O atom of an inversion-related mol­ecule to generate a dimer; adjacent dimers are linked by an N—H⋯O hydrogen bond to form a linear chain.

Related literature

For background to related compounds, see: Makki & Faidallah (1996[Makki, M. S. I. & Faidallah, H. M. (1996). J. Chin. Chem. Soc. 43, 433-438.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O3S2

  • Mr = 336.39

  • Monoclinic, P 21 /c

  • a = 12.6048 (10) Å

  • b = 13.2273 (10) Å

  • c = 8.9703 (7) Å

  • β = 102.242 (1)°

  • V = 1461.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.945

  • 9962 measured reflections

  • 3333 independent reflections

  • 2888 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.06

  • 3333 reflections

  • 209 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯O1i 0.87 (1) 2.06 (1) 2.922 (2) 169 (2)
N4—H2⋯O2ii 0.88 (1) 2.38 (2) 3.090 (2) 139 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This compound belongs to a class of tricyclic compounds posessing high antibacterial activity that are synthesized by reacting an aryl hydrazine with a thiazole that bears acetyl and carboxyl substituents on adjacent carbon atoms (Makki & Faidallah, 1996). A sulfonamido unit in the benzene ring of phenyl hydrazine should improved the activity. The thiazole–pyridazine fused-ring of C13H12N4O3S2 (Scheme I, Fig. 1) is planar; the benzene ring that bears the sulfonamido unit is twisted by 39.3 (1)°. The amino group uses an H atom to form a hydrogen bond to the ketonic O atom of an inversion-related molecule to generate a dimer (Fig. 2); adjacent dimers are linked by a weaker N–H···O hydrogen bond to form a linear chain (Table 1).

Related literature top

For background on related compounds, see: Makki & Faidallah (1996).

Experimental top

Ethyl 5-acetyl-2-methylthiazole-4-carboxylate (0.40 g, 0.002 mol) in ethanol (25 ml) was heated with p-sulfonamidophenyl hydrazine hydrochloride (0.49 g, 0.002 mol) for 2 h. The pyridazine that separated was collected and recrystallized from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; temperature factors were refined. Omitted because of bad disagreement were (12 2 3), (1 0 0) and (-1 2 1).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C13H12N4O3S2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded dimeric structure.
4-(2,7-dimethyl-4-oxo-1,3-thiazolo[4,5-d]pyridazin- 5-yl)benzenesulfonamide top
Crystal data top
C13H12N4O3S2F(000) = 696
Mr = 336.39Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3931 reflections
a = 12.6048 (10) Åθ = 2.3–28.2°
b = 13.2273 (10) ŵ = 0.38 mm1
c = 8.9703 (7) ÅT = 100 K
β = 102.242 (1)°Block, light brown
V = 1461.6 (2) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3333 independent reflections
Radiation source: fine-focus sealed tube2888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1116
Tmin = 0.928, Tmax = 0.945k = 1717
9962 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.9855P]
where P = (Fo2 + 2Fc2)/3
3333 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.53 e Å3
Crystal data top
C13H12N4O3S2V = 1461.6 (2) Å3
Mr = 336.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6048 (10) ŵ = 0.38 mm1
b = 13.2273 (10) ÅT = 100 K
c = 8.9703 (7) Å0.20 × 0.15 × 0.15 mm
β = 102.242 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2888 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.945Rint = 0.028
9962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
3333 reflectionsΔρmin = 0.53 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.13140 (3)0.42793 (3)0.70269 (5)0.01393 (12)
S20.34576 (3)0.29976 (4)0.11537 (5)0.01750 (12)
O10.73961 (10)0.47213 (10)0.67068 (14)0.0220 (3)
O20.33900 (11)0.19520 (11)0.07281 (17)0.0305 (3)
O30.32382 (11)0.37373 (12)0.00328 (15)0.0302 (3)
C11.14993 (15)0.57418 (14)0.9320 (2)0.0203 (4)
H1A1.10700.61500.98880.030*
H1B1.19240.61890.87990.030*
H1C1.19910.53021.00290.030*
C21.07602 (14)0.51116 (13)0.81743 (19)0.0155 (3)
N10.97011 (12)0.51401 (11)0.79149 (16)0.0160 (3)
N20.86442 (11)0.31764 (11)0.42826 (16)0.0142 (3)
N30.78999 (11)0.37071 (11)0.48923 (16)0.0134 (3)
N40.26042 (13)0.31912 (13)0.22293 (18)0.0214 (3)
H10.257 (2)0.3836 (8)0.242 (3)0.038 (7)*
H20.277 (2)0.2825 (17)0.3059 (19)0.041 (7)*
C30.92801 (14)0.44919 (13)0.67384 (18)0.0142 (3)
C41.00186 (13)0.39722 (13)0.61098 (18)0.0127 (3)
C50.96720 (13)0.32902 (12)0.48733 (18)0.0137 (3)
C61.04567 (15)0.26894 (15)0.4208 (2)0.0208 (4)
H6A1.00690.23430.32860.031*
H6B1.08110.21880.49530.031*
H6C1.10060.31410.39460.031*
C70.81235 (14)0.43424 (13)0.61656 (19)0.0149 (3)
C80.68056 (13)0.35427 (13)0.40510 (19)0.0145 (3)
C90.65207 (15)0.25831 (14)0.3480 (2)0.0221 (4)
H90.70260.20420.37010.027*
C100.54950 (15)0.24169 (14)0.2583 (2)0.0219 (4)
H100.52930.17620.21870.026*
C110.47709 (13)0.32119 (14)0.22727 (19)0.0161 (3)
C120.50573 (15)0.41714 (14)0.2838 (2)0.0226 (4)
H120.45520.47110.26110.027*
C130.60796 (15)0.43436 (14)0.3732 (2)0.0202 (4)
H130.62820.50000.41220.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0092 (2)0.0149 (2)0.0165 (2)0.00054 (15)0.00014 (15)0.00010 (15)
S20.0100 (2)0.0256 (3)0.0150 (2)0.00070 (16)0.00154 (15)0.00466 (16)
O10.0139 (6)0.0306 (8)0.0217 (6)0.0011 (5)0.0038 (5)0.0071 (5)
O20.0162 (7)0.0324 (8)0.0384 (8)0.0005 (6)0.0042 (6)0.0187 (7)
O30.0172 (7)0.0496 (10)0.0211 (7)0.0025 (6)0.0020 (5)0.0096 (6)
C10.0185 (9)0.0209 (9)0.0190 (8)0.0030 (7)0.0015 (7)0.0042 (7)
C20.0165 (8)0.0140 (8)0.0150 (8)0.0001 (7)0.0015 (6)0.0000 (6)
N10.0130 (7)0.0175 (7)0.0164 (7)0.0013 (6)0.0006 (5)0.0028 (6)
N20.0118 (7)0.0138 (7)0.0163 (7)0.0014 (5)0.0018 (5)0.0004 (5)
N30.0086 (7)0.0146 (7)0.0162 (7)0.0002 (5)0.0006 (5)0.0013 (5)
N40.0143 (7)0.0297 (9)0.0197 (8)0.0001 (7)0.0027 (6)0.0038 (7)
C30.0146 (8)0.0136 (8)0.0136 (7)0.0000 (6)0.0012 (6)0.0012 (6)
C40.0102 (8)0.0137 (8)0.0132 (7)0.0007 (6)0.0002 (6)0.0028 (6)
C50.0117 (8)0.0132 (8)0.0158 (7)0.0007 (6)0.0017 (6)0.0016 (6)
C60.0137 (8)0.0237 (9)0.0234 (9)0.0030 (7)0.0007 (7)0.0072 (7)
C70.0122 (8)0.0164 (8)0.0155 (8)0.0005 (6)0.0015 (6)0.0001 (6)
C80.0090 (8)0.0173 (8)0.0158 (8)0.0006 (6)0.0008 (6)0.0009 (6)
C90.0165 (9)0.0159 (9)0.0299 (10)0.0021 (7)0.0042 (7)0.0008 (7)
C100.0167 (9)0.0161 (9)0.0293 (10)0.0017 (7)0.0032 (7)0.0036 (7)
C110.0096 (8)0.0217 (9)0.0154 (7)0.0001 (7)0.0011 (6)0.0003 (7)
C120.0161 (9)0.0197 (9)0.0289 (10)0.0060 (7)0.0020 (8)0.0030 (7)
C130.0151 (9)0.0152 (9)0.0275 (9)0.0011 (7)0.0021 (7)0.0047 (7)
Geometric parameters (Å, º) top
S1—C41.7142 (17)N4—H20.875 (10)
S1—C21.7502 (17)C3—C41.371 (2)
S2—O31.4288 (15)C3—C71.453 (2)
S2—O21.4326 (15)C4—C51.425 (2)
S2—N41.6105 (16)C5—C61.489 (2)
S2—C111.7674 (17)C6—H6A0.9800
O1—C71.231 (2)C6—H6B0.9800
C1—C21.488 (2)C6—H6C0.9800
C1—H1A0.9800C8—C91.387 (3)
C1—H1B0.9800C8—C131.390 (2)
C1—H1C0.9800C9—C101.388 (3)
C2—N11.306 (2)C9—H90.9500
N1—C31.376 (2)C10—C111.382 (3)
N2—C51.300 (2)C10—H100.9500
N2—N31.3746 (19)C11—C121.386 (3)
N3—C71.398 (2)C12—C131.385 (3)
N3—C81.441 (2)C12—H120.9500
N4—H10.872 (10)C13—H130.9500
C4—S1—C288.46 (8)N2—C5—C4120.34 (15)
O3—S2—O2118.12 (9)N2—C5—C6117.64 (15)
O3—S2—N4106.80 (9)C4—C5—C6122.01 (15)
O2—S2—N4107.68 (9)C5—C6—H6A109.5
O3—S2—C11108.86 (8)C5—C6—H6B109.5
O2—S2—C11107.57 (8)H6A—C6—H6B109.5
N4—S2—C11107.36 (8)C5—C6—H6C109.5
C2—C1—H1A109.5H6A—C6—H6C109.5
C2—C1—H1B109.5H6B—C6—H6C109.5
H1A—C1—H1B109.5O1—C7—N3121.93 (15)
C2—C1—H1C109.5O1—C7—C3125.48 (16)
H1A—C1—H1C109.5N3—C7—C3112.59 (14)
H1B—C1—H1C109.5C9—C8—C13120.93 (16)
N1—C2—C1125.00 (16)C9—C8—N3118.39 (15)
N1—C2—S1115.69 (13)C13—C8—N3120.53 (15)
C1—C2—S1119.30 (13)C8—C9—C10119.70 (17)
C2—N1—C3109.40 (14)C8—C9—H9120.2
C5—N2—N3118.94 (14)C10—C9—H9120.2
N2—N3—C7126.57 (14)C11—C10—C9119.39 (17)
N2—N3—C8111.88 (13)C11—C10—H10120.3
C7—N3—C8121.55 (14)C9—C10—H10120.3
S2—N4—H1109.6 (17)C10—C11—C12120.90 (16)
S2—N4—H2110.8 (18)C10—C11—S2119.45 (14)
H1—N4—H2113 (2)C12—C11—S2119.64 (14)
C4—C3—N1116.28 (15)C13—C12—C11120.05 (17)
C4—C3—C7120.28 (15)C13—C12—H12120.0
N1—C3—C7123.44 (15)C11—C12—H12120.0
C3—C4—C5120.99 (15)C12—C13—C8119.02 (17)
C3—C4—S1110.16 (12)C12—C13—H13120.5
C5—C4—S1128.86 (13)C8—C13—H13120.5
C4—S1—C2—N11.29 (14)C4—C3—C7—O1175.26 (17)
C4—S1—C2—C1177.20 (15)N1—C3—C7—O14.5 (3)
C1—C2—N1—C3177.37 (16)C4—C3—C7—N34.9 (2)
S1—C2—N1—C31.03 (19)N1—C3—C7—N3175.35 (15)
C5—N2—N3—C73.4 (2)N2—N3—C8—C937.7 (2)
C5—N2—N3—C8176.49 (15)C7—N3—C8—C9142.50 (17)
C2—N1—C3—C40.1 (2)N2—N3—C8—C13137.94 (16)
C2—N1—C3—C7179.88 (16)C7—N3—C8—C1341.9 (2)
N1—C3—C4—C5179.24 (15)C13—C8—C9—C100.3 (3)
C7—C3—C4—C51.0 (2)N3—C8—C9—C10175.91 (17)
N1—C3—C4—S10.84 (19)C8—C9—C10—C110.0 (3)
C7—C3—C4—S1178.93 (13)C9—C10—C11—C120.3 (3)
C2—S1—C4—C31.12 (13)C9—C10—C11—S2179.11 (15)
C2—S1—C4—C5178.97 (16)O3—S2—C11—C10129.82 (16)
N3—N2—C5—C41.4 (2)O2—S2—C11—C100.72 (18)
N3—N2—C5—C6178.80 (15)N4—S2—C11—C10114.92 (16)
C3—C4—C5—N22.5 (2)O3—S2—C11—C1250.76 (17)
S1—C4—C5—N2177.63 (13)O2—S2—C11—C12179.85 (15)
C3—C4—C5—C6177.76 (16)N4—S2—C11—C1264.51 (17)
S1—C4—C5—C62.1 (3)C10—C11—C12—C130.3 (3)
N2—N3—C7—O1173.80 (15)S2—C11—C12—C13179.15 (15)
C8—N3—C7—O16.4 (3)C11—C12—C13—C80.1 (3)
N2—N3—C7—C36.3 (2)C9—C8—C13—C120.4 (3)
C8—N3—C7—C3173.48 (14)N3—C8—C13—C12175.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···O1i0.87 (1)2.06 (1)2.922 (2)169 (2)
N4—H2···O2ii0.88 (1)2.38 (2)3.090 (2)139 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H12N4O3S2
Mr336.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.6048 (10), 13.2273 (10), 8.9703 (7)
β (°) 102.242 (1)
V3)1461.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
9962, 3333, 2888
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.06
No. of reflections3333
No. of parameters209
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···O1i0.87 (1)2.06 (1)2.922 (2)169 (2)
N4—H2···O2ii0.88 (1)2.38 (2)3.090 (2)139 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMakki, M. S. I. & Faidallah, H. M. (1996). J. Chin. Chem. Soc. 43, 433–438.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds