organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′-(3-Hy­dr­oxy­phen­yl)-4-methyl­spiro­[benzo[e][1,4]diazepine-3,2′-oxirane]-2,5(1H,4H)-dione

aLaboratory of Microbial Pharmaceutical Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: xuqingyan@xmu.edu.cn

(Received 31 May 2011; accepted 8 June 2011; online 18 June 2011)

In the title compound, C17H14N2O4, the seven-membered ring adopts a boat conformation, and the two benzene rings make a dihedral angle of 45.22 (5)°. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the biological activity of the title compound, see: Birkinshaw et al. (1963[Birkinshaw, J. H., Luckner, M., Mohammed, Y. S., Mothes, K. & Stickings, C. E. (1963). Biochem. J. 89, 196-202.]); Cutler et al. (1984[Cutler, H. G., Crumley, F. G., Cox, R. H., Wells, J. & Cole, R. J. (1984). Plant Cell Physiol. 25, 257-263.]); Heguy, et al. (1998[Heguy, A., Cai, P., Meyn, P., Houck, D., Russo, S., Michitsch, R., Pearce, C. & Katz, B. (1998). Antivir. Chem. Chemother. 9, 149-155.]). For the biosynthesis of cyclo­penol, see: Nover & Luckner (1969[Nover, L. & Luckner, M. (1969). Eur. J. Biochem. 10, 268-273.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O4

  • Mr = 310.30

  • Monoclinic, P 21

  • a = 7.0066 (2) Å

  • b = 11.6160 (4) Å

  • c = 9.1568 (2) Å

  • β = 108.157 (1)°

  • V = 708.15 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 193 K

  • 0.55 × 0.32 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 6890 measured reflections

  • 1701 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.107

  • S = 0.99

  • 1701 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.13 2.893 (2) 148
O4—H4A⋯O1ii 0.82 1.95 2.7689 (17) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compund named cyclopenol is an benzodiazepine metabolite produced by a number of Penicllium species. Cyclopenol isolated from Penicillium cyclopium Westling (Birkinshaw et al., 1963). It display intermediate in the biosynthesis of viridicatins, inhibitors of the TNF-α-induced replication of human HIV (Nover & Luckner, 1969; Heguy, et al., 1998). It is of ecological significance due to its phytotoxic and antimicrobial properties (Cutler, et al., 1984). In our study, we determined the crystal structure of the title compound. The seven membered ring adopts a boat conformation. The crystal packing is stabilized by intermolecular N—H···O and O—H···O hydrogen bondings (Table 1).

Related literature top

For the biological activity of the title compound, see: Birkinshaw et al. (1963); Cutler et al. (1984); Heguy, et al. (1998). For the biosynthesis of cyclopenol, see: Nover & Luckner (1969).

Experimental top

The fungal F00734 was cultured using half sea-water Potato Dextrose Agar medium at 28 degrees celsius for 14 days. The fermentation (10 liters) was extracted with ethyl acetate (EtOAc). The EtOAc extract (5.0 g) which was subjected to column chromatography over RP-18, eluted with Methanol-H2O (30%, 50%, 70%, 100%; V/V) to yield 10 fractions. Fraction 5, eluted with methanol was further puried by Sephadex LH-20 chromatography. Then merged the components 1–15 tubes eluted with acetone, and further purified by silica-gel column chromatography to afford the title compound 1 (140.0 mg). F00734 is an high-yield strain of cyclopenol (2.8%).

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H distances of 0.93–0.98 Å, an N—H distance of 0.86 Å, and O—H distance of 0.82Å and Uiso(H)=1.2Ueq(N,C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Partial packing diagram of the title compound, viewed along the a axis.
3'-(3-Hydroxyphenyl)-4-methylspiro[benzo[e][1,4]diazepine-3,2'- oxirane]-2,5(1H,4H)-dione top
Crystal data top
C17H14N2O4F(000) = 324
Mr = 310.30Dx = 1.455 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1484 reflections
a = 7.0066 (2) Åθ = 1.9–27.5°
b = 11.6160 (4) ŵ = 0.11 mm1
c = 9.1568 (2) ÅT = 193 K
β = 108.157 (1)°Block, colourless
V = 708.15 (4) Å30.55 × 0.32 × 0.22 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1627 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 89
6890 measured reflectionsk = 1515
1701 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1701 reflections(Δ/σ)max = 0.009
208 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C17H14N2O4V = 708.15 (4) Å3
Mr = 310.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.0066 (2) ŵ = 0.11 mm1
b = 11.6160 (4) ÅT = 193 K
c = 9.1568 (2) Å0.55 × 0.32 × 0.22 mm
β = 108.157 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1627 reflections with I > 2σ(I)
6890 measured reflectionsRint = 0.021
1701 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.107H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
1701 reflectionsΔρmin = 0.24 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.4377 (2)0.08072 (14)0.31423 (17)0.0269 (3)
O30.4521 (2)0.40192 (14)0.02123 (17)0.0227 (3)
O10.6694 (2)0.51497 (15)0.29249 (19)0.0291 (4)
O40.0361 (2)0.06229 (14)0.25108 (18)0.0271 (4)
H4A0.07580.05420.26040.041*
N20.4837 (2)0.24388 (15)0.19567 (18)0.0184 (3)
N10.4887 (2)0.42631 (15)0.42617 (18)0.0205 (4)
H10.55780.46100.50870.025*
C80.3244 (3)0.35791 (17)0.4353 (2)0.0186 (4)
C90.2804 (3)0.24831 (18)0.3691 (2)0.0186 (4)
C70.2100 (3)0.40240 (19)0.5227 (2)0.0216 (4)
H70.24330.47330.57120.026*
C40.1162 (3)0.18798 (19)0.3878 (2)0.0236 (4)
H40.08580.11520.34450.028*
C30.4063 (3)0.18510 (18)0.2913 (2)0.0192 (4)
C120.1144 (3)0.22949 (19)0.1034 (2)0.0212 (4)
H120.24230.19760.07870.025*
C100.6209 (3)0.1863 (2)0.1253 (2)0.0257 (4)
H10A0.63500.10680.15540.038*
H10B0.74990.22310.15920.038*
H10C0.56710.19150.01540.038*
C160.1031 (3)0.3876 (2)0.0884 (2)0.0241 (4)
H160.12070.46070.05310.029*
C110.0875 (3)0.33865 (18)0.0492 (2)0.0201 (4)
C140.2433 (3)0.21769 (19)0.2334 (2)0.0234 (4)
H140.35410.17710.29410.028*
C60.0469 (3)0.3415 (2)0.5378 (2)0.0247 (4)
H60.03070.37250.59410.030*
C130.0508 (3)0.16860 (19)0.1948 (2)0.0208 (4)
C170.2579 (3)0.40891 (18)0.0485 (2)0.0198 (4)
H170.22000.48690.06950.024*
C150.2672 (3)0.3264 (2)0.1808 (2)0.0252 (4)
H150.39460.35920.20750.030*
C20.4422 (3)0.36451 (16)0.1645 (2)0.0180 (4)
C50.0007 (3)0.2341 (2)0.4688 (2)0.0267 (5)
H50.11130.19370.47740.032*
C10.5463 (3)0.44186 (18)0.2995 (2)0.0195 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0382 (8)0.0157 (7)0.0268 (7)0.0038 (6)0.0100 (6)0.0041 (6)
O30.0288 (7)0.0214 (7)0.0222 (7)0.0002 (5)0.0139 (5)0.0024 (6)
O10.0309 (8)0.0236 (8)0.0359 (8)0.0097 (6)0.0149 (6)0.0027 (7)
O40.0268 (7)0.0222 (8)0.0341 (8)0.0028 (6)0.0121 (6)0.0060 (6)
N20.0227 (7)0.0155 (8)0.0180 (7)0.0029 (6)0.0077 (6)0.0006 (7)
N10.0236 (8)0.0174 (8)0.0189 (8)0.0052 (6)0.0044 (6)0.0034 (6)
C80.0194 (9)0.0184 (9)0.0169 (8)0.0022 (7)0.0042 (7)0.0015 (7)
C90.0225 (8)0.0181 (9)0.0144 (8)0.0006 (7)0.0046 (7)0.0022 (7)
C70.0273 (9)0.0183 (9)0.0180 (8)0.0001 (7)0.0052 (7)0.0012 (7)
C40.0251 (9)0.0204 (10)0.0234 (9)0.0063 (8)0.0050 (7)0.0004 (8)
C30.0220 (9)0.0140 (9)0.0188 (8)0.0025 (7)0.0021 (6)0.0016 (7)
C120.0234 (9)0.0216 (10)0.0186 (8)0.0041 (7)0.0065 (7)0.0022 (7)
C100.0248 (10)0.0251 (11)0.0290 (9)0.0094 (8)0.0113 (7)0.0007 (8)
C160.0289 (10)0.0229 (10)0.0216 (9)0.0058 (8)0.0096 (8)0.0013 (8)
C110.0256 (9)0.0208 (10)0.0149 (8)0.0012 (7)0.0076 (7)0.0007 (7)
C140.0204 (9)0.0291 (12)0.0213 (9)0.0014 (7)0.0071 (7)0.0018 (8)
C60.0277 (10)0.0291 (11)0.0202 (9)0.0014 (8)0.0117 (8)0.0027 (8)
C130.0265 (9)0.0187 (9)0.0195 (8)0.0010 (8)0.0105 (7)0.0000 (7)
C170.0263 (10)0.0163 (9)0.0178 (8)0.0017 (7)0.0085 (7)0.0028 (7)
C150.0234 (10)0.0300 (12)0.0230 (10)0.0054 (8)0.0082 (8)0.0030 (8)
C20.0220 (9)0.0143 (9)0.0193 (8)0.0005 (7)0.0087 (7)0.0016 (7)
C50.0263 (10)0.0300 (12)0.0252 (10)0.0084 (9)0.0101 (8)0.0025 (9)
C10.0200 (8)0.0149 (9)0.0238 (9)0.0001 (6)0.0069 (7)0.0002 (7)
Geometric parameters (Å, º) top
O2—C31.238 (3)C12—C131.392 (3)
O3—C21.405 (2)C12—C111.396 (3)
O3—C171.461 (2)C12—H120.9300
O1—C11.226 (3)C10—H10A0.9600
O4—C131.354 (3)C10—H10B0.9600
O4—H4A0.8200C10—H10C0.9600
N2—C31.350 (3)C16—C151.392 (3)
N2—C21.441 (2)C16—C111.392 (3)
N2—C101.474 (2)C16—H160.9300
N1—C11.354 (3)C11—C171.492 (3)
N1—C81.422 (2)C14—C151.380 (3)
N1—H10.8600C14—C131.404 (3)
C8—C71.397 (3)C14—H140.9300
C8—C91.402 (3)C6—C51.391 (3)
C9—C41.403 (3)C6—H60.9300
C9—C31.489 (3)C17—C21.486 (3)
C7—C61.387 (3)C17—H170.9800
C7—H70.9300C15—H150.9300
C4—C51.373 (3)C2—C11.518 (3)
C4—H40.9300C5—H50.9300
C2—O3—C1762.43 (12)C11—C16—H16120.2
C13—O4—H4A109.5C16—C11—C12120.29 (19)
C3—N2—C2121.51 (17)C16—C11—C17117.10 (18)
C3—N2—C10120.16 (17)C12—C11—C17122.59 (17)
C2—N2—C10118.28 (17)C15—C14—C13119.7 (2)
C1—N1—C8125.99 (16)C15—C14—H14120.1
C1—N1—H1117.0C13—C14—H14120.1
C8—N1—H1117.0C7—C6—C5119.99 (19)
C7—C8—C9119.68 (18)C7—C6—H6120.0
C7—C8—N1116.53 (18)C5—C6—H6120.0
C9—C8—N1123.70 (17)O4—C13—C12122.98 (18)
C4—C9—C8118.62 (18)O4—C13—C14117.11 (18)
C4—C9—C3116.31 (19)C12—C13—C14119.9 (2)
C8—C9—C3124.83 (17)O3—C17—C256.95 (11)
C6—C7—C8120.4 (2)O3—C17—C11118.78 (16)
C6—C7—H7119.8C2—C17—C11126.41 (18)
C8—C7—H7119.8O3—C17—H17114.1
C5—C4—C9121.4 (2)C2—C17—H17114.1
C5—C4—H4119.3C11—C17—H17114.1
C9—C4—H4119.3C14—C15—C16120.80 (18)
O2—C3—N2121.27 (19)C14—C15—H15119.6
O2—C3—C9120.14 (19)C16—C15—H15119.6
N2—C3—C9118.58 (18)O3—C2—N2114.81 (16)
C13—C12—C11119.76 (18)O3—C2—C1760.63 (12)
C13—C12—H12120.1N2—C2—C17123.77 (17)
C11—C12—H12120.1O3—C2—C1115.22 (16)
N2—C10—H10A109.5N2—C2—C1113.46 (16)
N2—C10—H10B109.5C17—C2—C1117.85 (17)
H10A—C10—H10B109.5C4—C5—C6119.79 (19)
N2—C10—H10C109.5C4—C5—H5120.1
H10A—C10—H10C109.5C6—C5—H5120.1
H10B—C10—H10C109.5O1—C1—N1122.65 (19)
C15—C16—C11119.5 (2)O1—C1—C2122.34 (19)
C15—C16—H16120.2N1—C1—C2114.97 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.132.893 (2)148
O4—H4A···O1ii0.821.952.7689 (17)173
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H14N2O4
Mr310.30
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)7.0066 (2), 11.6160 (4), 9.1568 (2)
β (°) 108.157 (1)
V3)708.15 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.55 × 0.32 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6890, 1701, 1627
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.107, 0.99
No. of reflections1701
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.132.893 (2)148
O4—H4A···O1ii0.821.952.7689 (17)173
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z.
 

Acknowledgements

The authors thank the Fundamental Research Funds for the Central Universities, China, for financial support (grant No. 2010121092).

References

First citationBirkinshaw, J. H., Luckner, M., Mohammed, Y. S., Mothes, K. & Stickings, C. E. (1963). Biochem. J. 89, 196–202.  PubMed CAS Web of Science Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCutler, H. G., Crumley, F. G., Cox, R. H., Wells, J. & Cole, R. J. (1984). Plant Cell Physiol. 25, 257–263.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeguy, A., Cai, P., Meyn, P., Houck, D., Russo, S., Michitsch, R., Pearce, C. & Katz, B. (1998). Antivir. Chem. Chemother. 9, 149–155.  Web of Science CAS PubMed Google Scholar
First citationNover, L. & Luckner, M. (1969). Eur. J. Biochem. 10, 268–273.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds