metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua{2-(morpholin-4-yl)-N-[1-(2-pyri­dyl)ethyl­­idene]ethanamine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)manganese(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 31 May 2011; accepted 7 June 2011; online 18 June 2011)

In the title compound, [Mn(NCS)2(C13H19N3O)(H2O)], the Schiff base acts as an N,N′,N"-tridentate ligand, forming two five-membered chelating rings with the MnII atom. The distorted octa­hedral geometry around the metal atom is completed by two cis-positioned N-bound thio­cyanate ligands and one water mol­ecule. In the crystal, adjacent mol­ecules are linked through O—H⋯O, O—H⋯S and C—H⋯S hydrogen bonds into a three-dimensional supra-mol­ecular structure. An intra­molecular C—H⋯O hydrogen bond also occurs.

Related literature

For the isostructural Co(II) complex, see: Suleiman Gwaram et al. (2011[Suleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m108.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C13H19N3O)(H2O)]

  • Mr = 422.43

  • Monoclinic, P 21 /c

  • a = 7.1837 (13) Å

  • b = 22.408 (4) Å

  • c = 12.112 (2) Å

  • β = 91.149 (3)°

  • V = 1949.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.19 × 0.16 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.846, Tmax = 0.931

  • 11816 measured reflections

  • 4235 independent reflections

  • 3197 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.082

  • S = 1.01

  • 4235 reflections

  • 233 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.2835 (19)
Mn1—N2 2.2115 (18)
Mn1—N3 2.3891 (19)
Mn1—N4 2.137 (2)
Mn1—N5 2.145 (2)
Mn1—O2 2.2117 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯S1i 0.82 (2) 2.38 (2) 3.1910 (18) 169 (2)
O2—H2B⋯O1ii 0.82 (2) 1.89 (2) 2.693 (2) 164 (3)
C11—H11A⋯O2 0.99 2.41 3.179 (3) 134
C12—H12A⋯S2iii 0.99 2.82 3.674 (2) 145
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal of the title compound is isostructural with the previously reported CoII complex (Suleiman Gwaram et al., 2011). The metal center is coordinated by the N,N',N"-tridentate Schiff base, two N-donor thiocyanates and one water O atom in a distorted octahedral geometry. In the crystal, the molecules are linked through O—H···O and O—H···S hydrogen bonds into layers parallel to the ac plane and theses are connected into a three-dimensional network via C—H···S interactions. Moreover, intramolecular C—H···O hydrogen bonding is observed.

Related literature top

For the isostructural Co(II) complex, see: Suleiman Gwaram et al. (2011).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of manganese(II) acetate tetrahydrate (0.41 g, 1.65 mmol) and ammonium thiocyanate (0.13 g, 1.65 mmol) in a minimum amount of ethanol. The resulting solution was refluxed for 30 min, and then left at room temperature. The crystals of the title complex were obtained in a week.

Refinement top

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å. The O-bound H atoms were located in a difference Fourier map, and refined with a distance restraint of O–H 0.84±0.02. For all H atoms, Uiso(H) was set to 1.2(1.5 for methyl)Ueq(carrier atom). An additional rigid-bond type restraint (DELU in SHELXL97) was placed on the displacement parameters of S2 and C15.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Aqua{2-(morpholin-4-yl)-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C13H19N3O)(H2O)]F(000) = 876
Mr = 422.43Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2405 reflections
a = 7.1837 (13) Åθ = 2.5–27.0°
b = 22.408 (4) ŵ = 0.91 mm1
c = 12.112 (2) ÅT = 100 K
β = 91.149 (3)°Prismatic, brown
V = 1949.3 (6) Å30.19 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4235 independent reflections
Radiation source: fine-focus sealed tube3197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.846, Tmax = 0.931k = 2815
11816 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.8463P]
where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max = 0.010
233 parametersΔρmax = 0.33 e Å3
3 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mn(NCS)2(C13H19N3O)(H2O)]V = 1949.3 (6) Å3
Mr = 422.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1837 (13) ŵ = 0.91 mm1
b = 22.408 (4) ÅT = 100 K
c = 12.112 (2) Å0.19 × 0.16 × 0.08 mm
β = 91.149 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4235 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3197 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.931Rint = 0.040
11816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.33 e Å3
4235 reflectionsΔρmin = 0.46 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.32353 (4)0.376455 (15)0.71236 (3)0.01469 (10)
S10.15046 (9)0.22409 (3)0.71859 (8)0.0455 (2)
S20.08739 (9)0.56599 (3)0.84034 (6)0.03342 (18)
O10.3684 (2)0.29611 (7)1.04053 (13)0.0274 (4)
O20.4538 (2)0.28777 (8)0.69253 (14)0.0240 (4)
H2A0.562 (3)0.2763 (11)0.701 (2)0.029*
H2B0.406 (3)0.2628 (10)0.6508 (19)0.029*
N10.3511 (2)0.38231 (8)0.52518 (15)0.0193 (4)
N20.5890 (2)0.42204 (8)0.67754 (15)0.0167 (4)
N30.4725 (2)0.38883 (8)0.88902 (15)0.0159 (4)
N40.0713 (3)0.32585 (10)0.71154 (18)0.0291 (5)
N50.1827 (3)0.45968 (9)0.73672 (16)0.0216 (4)
C10.2350 (3)0.35789 (11)0.4504 (2)0.0263 (6)
H10.11970.34240.47450.032*
C20.2752 (4)0.35409 (12)0.3394 (2)0.0341 (6)
H20.18830.33710.28830.041*
C30.4436 (4)0.37543 (13)0.3045 (2)0.0375 (7)
H30.47620.37240.22910.045*
C40.5648 (4)0.40130 (12)0.3805 (2)0.0305 (6)
H40.68110.41670.35780.037*
C50.5147 (3)0.40447 (10)0.49019 (19)0.0199 (5)
C60.6389 (3)0.43017 (11)0.57811 (19)0.0206 (5)
C70.8112 (3)0.46256 (13)0.5449 (2)0.0345 (7)
H7A0.85370.48850.60540.052*
H7B0.78380.48680.47910.052*
H7C0.90890.43360.52830.052*
C80.6995 (3)0.44329 (11)0.77211 (19)0.0217 (5)
H8A0.74830.48370.75680.026*
H8B0.80650.41630.78580.026*
C90.5774 (3)0.44504 (10)0.87324 (19)0.0197 (5)
H9A0.65660.45260.93960.024*
H9B0.48820.47850.86560.024*
C100.6016 (3)0.34062 (10)0.92493 (19)0.0209 (5)
H10A0.67550.35430.99000.025*
H10B0.68890.33190.86490.025*
C110.4980 (3)0.28452 (11)0.95414 (19)0.0250 (6)
H11A0.42990.26940.88800.030*
H11B0.58770.25350.97880.030*
C120.2375 (3)0.34069 (11)1.0051 (2)0.0245 (5)
H12A0.14700.34801.06420.029*
H12B0.16810.32650.93880.029*
C130.3372 (3)0.39803 (10)0.97860 (19)0.0209 (5)
H13A0.24500.42860.95550.025*
H13B0.40370.41281.04560.025*
C140.0226 (3)0.28415 (11)0.7138 (2)0.0227 (5)
C150.1420 (3)0.50395 (10)0.78071 (18)0.0158 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01428 (16)0.01413 (18)0.01570 (18)0.00171 (13)0.00136 (12)0.00224 (14)
S10.0221 (3)0.0171 (3)0.0974 (7)0.0034 (3)0.0035 (4)0.0039 (4)
S20.0328 (3)0.0233 (4)0.0442 (4)0.0049 (3)0.0016 (3)0.0134 (3)
O10.0381 (10)0.0239 (10)0.0206 (9)0.0099 (8)0.0089 (7)0.0075 (7)
O20.0243 (9)0.0218 (10)0.0255 (10)0.0047 (7)0.0053 (7)0.0081 (7)
N10.0207 (9)0.0191 (11)0.0179 (10)0.0029 (8)0.0024 (8)0.0006 (8)
N20.0151 (8)0.0190 (11)0.0159 (10)0.0024 (7)0.0013 (7)0.0015 (8)
N30.0214 (9)0.0126 (10)0.0137 (10)0.0024 (7)0.0012 (7)0.0006 (8)
N40.0211 (10)0.0268 (13)0.0394 (13)0.0052 (9)0.0034 (9)0.0048 (10)
N50.0197 (9)0.0214 (11)0.0238 (11)0.0021 (8)0.0002 (8)0.0008 (9)
C10.0291 (13)0.0203 (14)0.0291 (15)0.0032 (10)0.0088 (11)0.0027 (11)
C20.0542 (17)0.0258 (15)0.0216 (15)0.0046 (13)0.0162 (13)0.0041 (11)
C30.0604 (19)0.0378 (17)0.0142 (13)0.0062 (14)0.0003 (12)0.0011 (12)
C40.0399 (15)0.0308 (15)0.0211 (14)0.0036 (12)0.0053 (11)0.0064 (11)
C50.0235 (11)0.0179 (13)0.0182 (12)0.0043 (9)0.0006 (9)0.0035 (10)
C60.0180 (10)0.0217 (13)0.0224 (13)0.0016 (9)0.0011 (9)0.0076 (10)
C70.0211 (12)0.0511 (19)0.0314 (16)0.0071 (12)0.0020 (11)0.0174 (13)
C80.0202 (11)0.0221 (13)0.0225 (13)0.0067 (9)0.0040 (9)0.0006 (10)
C90.0249 (11)0.0155 (12)0.0185 (13)0.0034 (9)0.0067 (9)0.0020 (9)
C100.0238 (11)0.0203 (13)0.0187 (13)0.0043 (10)0.0001 (9)0.0017 (10)
C110.0370 (13)0.0202 (14)0.0181 (13)0.0080 (11)0.0065 (11)0.0040 (10)
C120.0318 (13)0.0247 (14)0.0175 (13)0.0078 (10)0.0075 (10)0.0062 (10)
C130.0302 (12)0.0186 (13)0.0140 (12)0.0069 (10)0.0038 (10)0.0008 (9)
C140.0154 (10)0.0222 (14)0.0306 (14)0.0023 (10)0.0007 (10)0.0049 (11)
C150.0137 (10)0.0179 (10)0.0158 (12)0.0012 (8)0.0006 (8)0.0028 (8)
Geometric parameters (Å, º) top
Mn1—N12.2835 (19)C3—C41.382 (4)
Mn1—N22.2115 (18)C3—H30.9500
Mn1—N32.3891 (19)C4—C51.386 (3)
Mn1—N42.137 (2)C4—H40.9500
Mn1—N52.145 (2)C5—C61.491 (3)
Mn1—O22.2117 (17)C6—C71.497 (3)
S1—C141.631 (2)C7—H7A0.9800
S2—C151.618 (2)C7—H7B0.9800
O1—C121.432 (3)C7—H7C0.9800
O1—C111.438 (3)C8—C91.521 (3)
O2—H2A0.820 (16)C8—H8A0.9900
O2—H2B0.824 (16)C8—H8B0.9900
N1—C11.336 (3)C9—H9A0.9900
N1—C51.352 (3)C9—H9B0.9900
N2—C61.276 (3)C10—C111.507 (3)
N2—C81.460 (3)C10—H10A0.9900
N3—C91.482 (3)C10—H10B0.9900
N3—C101.483 (3)C11—H11A0.9900
N3—C131.486 (3)C11—H11B0.9900
N4—C141.153 (3)C12—C131.509 (3)
N5—C151.166 (3)C12—H12A0.9900
C1—C21.384 (4)C12—H12B0.9900
C1—H10.9500C13—H13A0.9900
C2—C31.375 (4)C13—H13B0.9900
C2—H20.9500
N4—Mn1—N593.43 (8)N2—C6—C5116.3 (2)
N4—Mn1—N2168.07 (8)N2—C6—C7124.9 (2)
N5—Mn1—N292.03 (7)C5—C6—C7118.8 (2)
N4—Mn1—O283.30 (7)C6—C7—H7A109.5
N5—Mn1—O2176.33 (7)C6—C7—H7B109.5
N2—Mn1—O291.49 (7)H7A—C7—H7B109.5
N4—Mn1—N196.67 (8)C6—C7—H7C109.5
N5—Mn1—N197.88 (7)H7A—C7—H7C109.5
N2—Mn1—N172.05 (7)H7B—C7—H7C109.5
O2—Mn1—N184.17 (7)N2—C8—C9109.09 (17)
N4—Mn1—N3115.48 (7)N2—C8—H8A109.9
N5—Mn1—N388.85 (7)C9—C8—H8A109.9
N2—Mn1—N375.21 (6)N2—C8—H8B109.9
O2—Mn1—N391.07 (6)C9—C8—H8B109.9
N1—Mn1—N3146.75 (7)H8A—C8—H8B108.3
C12—O1—C11109.80 (17)N3—C9—C8112.62 (18)
Mn1—O2—H2A132.0 (19)N3—C9—H9A109.1
Mn1—O2—H2B120.5 (19)C8—C9—H9A109.1
H2A—O2—H2B104 (3)N3—C9—H9B109.1
C1—N1—C5118.2 (2)C8—C9—H9B109.1
C1—N1—Mn1125.76 (16)H9A—C9—H9B107.8
C5—N1—Mn1115.18 (14)N3—C10—C11111.58 (19)
C6—N2—C8122.36 (19)N3—C10—H10A109.3
C6—N2—Mn1120.36 (15)C11—C10—H10A109.3
C8—N2—Mn1117.27 (13)N3—C10—H10B109.3
C9—N3—C10109.89 (17)C11—C10—H10B109.3
C9—N3—C13108.54 (17)H10A—C10—H10B108.0
C10—N3—C13107.53 (17)O1—C11—C10110.50 (19)
C9—N3—Mn1101.71 (12)O1—C11—H11A109.6
C10—N3—Mn1116.38 (13)C10—C11—H11A109.6
C13—N3—Mn1112.49 (14)O1—C11—H11B109.6
C14—N4—Mn1157.83 (19)C10—C11—H11B109.6
C15—N5—Mn1157.80 (18)H11A—C11—H11B108.1
N1—C1—C2123.0 (2)O1—C12—C13110.3 (2)
N1—C1—H1118.5O1—C12—H12A109.6
C2—C1—H1118.5C13—C12—H12A109.6
C3—C2—C1118.6 (2)O1—C12—H12B109.6
C3—C2—H2120.7C13—C12—H12B109.6
C1—C2—H2120.7H12A—C12—H12B108.1
C2—C3—C4119.2 (2)N3—C13—C12110.95 (18)
C2—C3—H3120.4N3—C13—H13A109.4
C4—C3—H3120.4C12—C13—H13A109.4
C3—C4—C5119.2 (2)N3—C13—H13B109.4
C3—C4—H4120.4C12—C13—H13B109.4
C5—C4—H4120.4H13A—C13—H13B108.0
N1—C5—C4121.8 (2)N4—C14—S1178.4 (2)
N1—C5—C6115.45 (19)N5—C15—S2179.1 (2)
C4—C5—C6122.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···S1i0.82 (2)2.38 (2)3.1910 (18)169 (2)
O2—H2B···O1ii0.82 (2)1.89 (2)2.693 (2)164 (3)
C11—H11A···O20.992.413.179 (3)134
C12—H12A···S2iii0.992.823.674 (2)145
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C13H19N3O)(H2O)]
Mr422.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1837 (13), 22.408 (4), 12.112 (2)
β (°) 91.149 (3)
V3)1949.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.19 × 0.16 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.846, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
11816, 4235, 3197
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.01
No. of reflections4235
No. of parameters233
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—N12.2835 (19)Mn1—N42.137 (2)
Mn1—N22.2115 (18)Mn1—N52.145 (2)
Mn1—N32.3891 (19)Mn1—O22.2117 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···S1i0.820 (16)2.382 (17)3.1910 (18)169 (2)
O2—H2B···O1ii0.824 (16)1.893 (18)2.693 (2)164 (3)
C11—H11A···O20.992.413.179 (3)134
C12—H12A···S2iii0.992.823.674 (2)145
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1, z+2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m108.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds