organic compounds
1-[(3-Chlorophenyl)(morpholin-4-yl)methyl]naphthalen-2-ol
aKey Laboratory of Organosilicon Chemistry and Material Technology of the Ministry of Education, Hangzhou Normal University, Hangzhou 310012, People's Republic of China
*Correspondence e-mail: sljchem@yahoo.com.cn
In the title compound, C21H20ClNO2, the dihedral angle between the naphthylene ring system and the phenyl ring is 77.86 (15)°. The morpholine ring adopts a chair conformation. The hydroxyl group is involved in intramolecular O—H⋯N hydrogen bonding. A weak intermolecular C—H⋯π interaction is present in the crystal structure.
Related literature
For related structures, see: Devi & Bhuyan (2004); Domling & Ugi (2000); Fu et al. (2009). For multi-component reactions, see: Hulme & Gore (2003); Ugi (1962).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811021726/xu5238sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021726/xu5238Isup2.hkl
A dry 50 ml flask was charged with 3-chlorobenzaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and morpholine (10 mmol). The mixture was stirred at 373 K for 12 h and then added ethanol (15 ml), after heated under reflux for 1 h, the precipitate was filtered out and washed with ethanol for 3 times to give the title compound. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution.
All the H atoms attached to C atoms were situated into the idealized positions and treated as riding with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine) with Uiso(H)=1.2Ueq(C). The positional parameters of the H atom (O1) was refined freely. And in the last stage of the
it was restrained with the H1—O1 = 0.82 (2)Å), with Uiso(H)=1.5Ueq(O).Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level. |
C21H20ClNO2 | F(000) = 744 |
Mr = 353.83 | Dx = 1.352 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 3951 reflections |
a = 14.1896 (18) Å | θ = 3.7–27.5° |
b = 15.881 (2) Å | µ = 0.23 mm−1 |
c = 10.3998 (10) Å | T = 298 K |
β = 132.13 (2)° | Block, colourless |
V = 1738.0 (7) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 4 |
Rigaku Mercury2 diffractometer | 3127 independent reflections |
Radiation source: fine-focus sealed tube | 2050 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.105 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 25.2°, θmin = 3.7° |
CCD profile fitting scans | h = −16→16 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −18→18 |
Tmin = 0.89, Tmax = 1.00 | l = −12→12 |
7216 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.085 | H-atom parameters constrained |
wR(F2) = 0.240 | w = 1/[σ2(Fo2) + (0.116P)2 + 0.730P] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
3127 reflections | Δρmax = 0.33 e Å−3 |
226 parameters | Δρmin = −0.29 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1551 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (16) |
C21H20ClNO2 | V = 1738.0 (7) Å3 |
Mr = 353.83 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 14.1896 (18) Å | µ = 0.23 mm−1 |
b = 15.881 (2) Å | T = 298 K |
c = 10.3998 (10) Å | 0.40 × 0.30 × 0.20 mm |
β = 132.13 (2)° |
Rigaku Mercury2 diffractometer | 3127 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2050 reflections with I > 2σ(I) |
Tmin = 0.89, Tmax = 1.00 | Rint = 0.105 |
7216 measured reflections |
R[F2 > 2σ(F2)] = 0.085 | H-atom parameters constrained |
wR(F2) = 0.240 | Δρmax = 0.33 e Å−3 |
S = 0.99 | Δρmin = −0.29 e Å−3 |
3127 reflections | Absolute structure: Flack (1983), 1551 Friedel pairs |
226 parameters | Absolute structure parameter: 0.07 (16) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.84978 (14) | 0.53891 (11) | 0.59226 (19) | 0.0747 (5) | |
N1 | 0.4387 (4) | 0.6957 (3) | −0.0609 (6) | 0.0481 (11) | |
C4 | 0.2270 (5) | 0.5435 (4) | 0.0113 (7) | 0.0554 (15) | |
H4A | 0.2462 | 0.5206 | −0.0511 | 0.066* | |
C2 | 0.3791 (4) | 0.6606 (3) | 0.1069 (6) | 0.0433 (13) | |
C3 | 0.2871 (4) | 0.6169 (4) | 0.1035 (7) | 0.0458 (12) | |
O1 | 0.5267 (4) | 0.7746 (2) | 0.2256 (5) | 0.0681 (12) | |
H1A | 0.5381 | 0.7522 | 0.1660 | 0.102* | |
C10 | 0.4042 (6) | 0.7604 (4) | 0.3021 (8) | 0.0615 (17) | |
H10A | 0.4455 | 0.8085 | 0.3690 | 0.074* | |
C11 | 0.4105 (4) | 0.6255 (4) | 0.0053 (6) | 0.0441 (13) | |
H11A | 0.3346 | 0.5962 | −0.0957 | 0.053* | |
C18 | 0.7153 (5) | 0.5175 (4) | 0.3731 (7) | 0.0506 (13) | |
C1 | 0.4344 (5) | 0.7309 (4) | 0.2081 (7) | 0.0530 (15) | |
C17 | 0.6232 (4) | 0.5757 (4) | 0.2811 (7) | 0.0496 (14) | |
H17A | 0.6314 | 0.6259 | 0.3337 | 0.060* | |
O2 | 0.3993 (4) | 0.7915 (3) | −0.3232 (6) | 0.0786 (13) | |
C16 | 0.5163 (5) | 0.5618 (4) | 0.1089 (6) | 0.0474 (13) | |
C21 | 0.5104 (5) | 0.4884 (3) | 0.0364 (8) | 0.0536 (15) | |
H21A | 0.4409 | 0.4773 | −0.0798 | 0.064* | |
C6 | 0.1102 (6) | 0.5319 (5) | 0.0997 (8) | 0.071 (2) | |
H6A | 0.0540 | 0.5025 | 0.1006 | 0.085* | |
C15 | 0.3269 (5) | 0.7510 (4) | −0.1813 (8) | 0.0530 (14) | |
H15A | 0.2571 | 0.7192 | −0.2820 | 0.064* | |
H15B | 0.2997 | 0.7736 | −0.1241 | 0.064* | |
C12 | 0.4812 (5) | 0.6659 (4) | −0.1490 (7) | 0.0529 (14) | |
H12A | 0.5596 | 0.6343 | −0.0681 | 0.063* | |
H12B | 0.4175 | 0.6288 | −0.2439 | 0.063* | |
C8 | 0.2555 (5) | 0.6503 (4) | 0.1990 (7) | 0.0578 (16) | |
C19 | 0.7135 (6) | 0.4438 (4) | 0.3062 (8) | 0.0629 (16) | |
H19A | 0.7796 | 0.4051 | 0.3719 | 0.075* | |
C20 | 0.6086 (7) | 0.4297 (4) | 0.1365 (9) | 0.0699 (17) | |
H20A | 0.6023 | 0.3794 | 0.0856 | 0.084* | |
C9 | 0.3224 (6) | 0.7255 (4) | 0.3030 (8) | 0.0646 (16) | |
H9A | 0.3065 | 0.7482 | 0.3693 | 0.077* | |
C7 | 0.1665 (6) | 0.6075 (6) | 0.1928 (9) | 0.080 (2) | |
H7A | 0.1439 | 0.6296 | 0.2518 | 0.096* | |
C14 | 0.3634 (7) | 0.8196 (5) | −0.2346 (9) | 0.083 (2) | |
H14A | 0.2923 | 0.8581 | −0.3084 | 0.099* | |
H14B | 0.4334 | 0.8506 | −0.1325 | 0.099* | |
C13 | 0.5017 (6) | 0.7377 (5) | −0.2158 (9) | 0.074 (2) | |
H13A | 0.5733 | 0.7699 | −0.1181 | 0.089* | |
H13B | 0.5247 | 0.7165 | −0.2790 | 0.089* | |
C5 | 0.1409 (6) | 0.5033 (5) | 0.0082 (8) | 0.0641 (17) | |
H5A | 0.1017 | 0.4548 | −0.0583 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0583 (8) | 0.0818 (10) | 0.0641 (8) | 0.0128 (8) | 0.0329 (7) | −0.0010 (8) |
N1 | 0.0500 (19) | 0.057 (3) | 0.050 (2) | −0.0125 (19) | 0.0387 (17) | −0.007 (2) |
C4 | 0.046 (2) | 0.075 (4) | 0.051 (3) | −0.003 (3) | 0.035 (2) | 0.002 (3) |
C2 | 0.040 (2) | 0.053 (3) | 0.035 (2) | 0.005 (2) | 0.025 (2) | 0.008 (2) |
C3 | 0.045 (2) | 0.056 (3) | 0.043 (2) | 0.011 (2) | 0.033 (2) | 0.012 (2) |
O1 | 0.066 (2) | 0.058 (2) | 0.070 (2) | −0.005 (2) | 0.042 (2) | −0.010 (2) |
C10 | 0.073 (3) | 0.047 (3) | 0.056 (3) | 0.013 (3) | 0.040 (3) | −0.008 (3) |
C11 | 0.035 (2) | 0.055 (3) | 0.041 (2) | 0.002 (2) | 0.0247 (19) | 0.001 (2) |
C18 | 0.058 (3) | 0.047 (3) | 0.066 (3) | 0.008 (2) | 0.050 (2) | 0.000 (2) |
C1 | 0.048 (3) | 0.052 (3) | 0.051 (3) | −0.003 (3) | 0.030 (2) | −0.013 (3) |
C17 | 0.042 (2) | 0.066 (4) | 0.053 (3) | 0.005 (2) | 0.036 (2) | 0.008 (3) |
O2 | 0.105 (3) | 0.081 (3) | 0.077 (2) | 0.036 (2) | 0.072 (2) | 0.033 (2) |
C16 | 0.052 (2) | 0.053 (3) | 0.050 (3) | −0.016 (2) | 0.039 (2) | −0.009 (2) |
C21 | 0.064 (3) | 0.044 (3) | 0.058 (3) | −0.005 (3) | 0.043 (3) | −0.013 (3) |
C6 | 0.061 (3) | 0.090 (5) | 0.074 (4) | 0.009 (3) | 0.050 (3) | 0.026 (4) |
C15 | 0.046 (3) | 0.052 (3) | 0.055 (3) | 0.010 (2) | 0.031 (2) | 0.009 (3) |
C12 | 0.059 (3) | 0.062 (3) | 0.052 (3) | 0.000 (3) | 0.043 (2) | 0.000 (3) |
C8 | 0.064 (3) | 0.077 (4) | 0.049 (3) | 0.018 (3) | 0.045 (2) | 0.024 (3) |
C19 | 0.085 (3) | 0.043 (3) | 0.075 (3) | −0.001 (3) | 0.059 (3) | −0.007 (3) |
C20 | 0.108 (4) | 0.040 (3) | 0.096 (4) | −0.002 (3) | 0.083 (3) | −0.004 (3) |
C9 | 0.094 (3) | 0.057 (4) | 0.062 (3) | 0.024 (3) | 0.060 (3) | 0.006 (3) |
C7 | 0.083 (3) | 0.122 (6) | 0.078 (3) | 0.031 (4) | 0.071 (3) | 0.037 (4) |
C14 | 0.095 (4) | 0.097 (5) | 0.090 (4) | 0.033 (4) | 0.075 (3) | 0.045 (4) |
C13 | 0.084 (3) | 0.096 (5) | 0.077 (4) | −0.004 (4) | 0.068 (3) | −0.001 (4) |
C5 | 0.061 (3) | 0.074 (4) | 0.070 (4) | −0.003 (3) | 0.050 (3) | 0.007 (3) |
Cl1—C18 | 1.765 (6) | C16—C21 | 1.360 (8) |
N1—C12 | 1.472 (7) | C21—C20 | 1.395 (9) |
N1—C15 | 1.480 (7) | C21—H21A | 0.9300 |
N1—C11 | 1.499 (7) | C6—C5 | 1.362 (10) |
C4—C5 | 1.359 (9) | C6—C7 | 1.407 (11) |
C4—C3 | 1.382 (8) | C6—H6A | 0.9300 |
C4—H4A | 0.9300 | C15—C14 | 1.465 (10) |
C2—C1 | 1.364 (7) | C15—H15A | 0.9700 |
C2—C3 | 1.459 (7) | C15—H15B | 0.9700 |
C2—C11 | 1.502 (8) | C12—C13 | 1.462 (10) |
C3—C8 | 1.437 (8) | C12—H12A | 0.9700 |
O1—C1 | 1.381 (7) | C12—H12B | 0.9700 |
O1—H1A | 0.8200 | C8—C7 | 1.396 (9) |
C10—C9 | 1.290 (9) | C8—C9 | 1.457 (9) |
C10—C1 | 1.387 (9) | C19—C20 | 1.362 (9) |
C10—H10A | 0.9300 | C19—H19A | 0.9300 |
C11—C16 | 1.506 (7) | C20—H20A | 0.9300 |
C11—H11A | 0.9800 | C9—H9A | 0.9300 |
C18—C17 | 1.342 (7) | C7—H7A | 0.9300 |
C18—C19 | 1.353 (8) | C14—H14A | 0.9700 |
C17—C16 | 1.383 (7) | C14—H14B | 0.9700 |
C17—H17A | 0.9300 | C13—H13A | 0.9700 |
O2—C13 | 1.383 (8) | C13—H13B | 0.9700 |
O2—C14 | 1.393 (9) | C5—H5A | 0.9300 |
C12—N1—C15 | 108.6 (5) | C14—C15—H15A | 110.1 |
C12—N1—C11 | 113.2 (4) | N1—C15—H15A | 110.1 |
C15—N1—C11 | 111.4 (4) | C14—C15—H15B | 110.1 |
C5—C4—C3 | 122.7 (7) | N1—C15—H15B | 110.1 |
C5—C4—H4A | 118.7 | H15A—C15—H15B | 108.4 |
C3—C4—H4A | 118.7 | C13—C12—N1 | 109.9 (5) |
C1—C2—C3 | 116.8 (5) | C13—C12—H12A | 109.7 |
C1—C2—C11 | 124.0 (5) | N1—C12—H12A | 109.7 |
C3—C2—C11 | 119.2 (5) | C13—C12—H12B | 109.7 |
C4—C3—C8 | 117.2 (5) | N1—C12—H12B | 109.7 |
C4—C3—C2 | 123.0 (5) | H12A—C12—H12B | 108.2 |
C8—C3—C2 | 119.8 (5) | C7—C8—C3 | 118.7 (6) |
C1—O1—H1A | 109.5 | C7—C8—C9 | 123.5 (6) |
C9—C10—C1 | 124.4 (6) | C3—C8—C9 | 117.7 (5) |
C9—C10—H10A | 117.8 | C18—C19—C20 | 115.8 (6) |
C1—C10—H10A | 117.8 | C18—C19—H19A | 122.1 |
N1—C11—C2 | 110.0 (4) | C20—C19—H19A | 122.1 |
N1—C11—C16 | 112.5 (4) | C19—C20—C21 | 122.3 (6) |
C2—C11—C16 | 111.7 (4) | C19—C20—H20A | 118.9 |
N1—C11—H11A | 107.4 | C21—C20—H20A | 118.9 |
C2—C11—H11A | 107.4 | C10—C9—C8 | 119.2 (6) |
C16—C11—H11A | 107.4 | C10—C9—H9A | 120.4 |
C17—C18—C19 | 123.7 (6) | C8—C9—H9A | 120.4 |
C17—C18—Cl1 | 118.7 (5) | C8—C7—C6 | 121.7 (7) |
C19—C18—Cl1 | 117.5 (4) | C8—C7—H7A | 119.2 |
C2—C1—O1 | 121.1 (6) | C6—C7—H7A | 119.2 |
C2—C1—C10 | 122.0 (6) | O2—C14—C15 | 113.0 (7) |
O1—C1—C10 | 116.8 (5) | O2—C14—H14A | 109.0 |
C18—C17—C16 | 120.8 (6) | C15—C14—H14A | 109.0 |
C18—C17—H17A | 119.6 | O2—C14—H14B | 109.0 |
C16—C17—H17A | 119.6 | C15—C14—H14B | 109.0 |
C13—O2—C14 | 108.4 (5) | H14A—C14—H14B | 107.8 |
C21—C16—C17 | 117.4 (5) | O2—C13—C12 | 115.5 (5) |
C21—C16—C11 | 121.2 (5) | O2—C13—H13A | 108.4 |
C17—C16—C11 | 121.4 (5) | C12—C13—H13A | 108.4 |
C16—C21—C20 | 119.9 (5) | O2—C13—H13B | 108.4 |
C16—C21—H21A | 120.0 | C12—C13—H13B | 108.4 |
C20—C21—H21A | 120.0 | H13A—C13—H13B | 107.5 |
C5—C6—C7 | 117.7 (6) | C4—C5—C6 | 122.0 (7) |
C5—C6—H6A | 121.1 | C4—C5—H5A | 119.0 |
C7—C6—H6A | 121.1 | C6—C5—H5A | 119.0 |
C14—C15—N1 | 108.2 (5) |
Cg is the centroid of the C3–C8 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.82 | 1.97 | 2.649 (6) | 139 |
C21—H21A···Cgi | 0.93 | 2.87 | 3.770 (7) | 164 |
Symmetry code: (i) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C21H20ClNO2 |
Mr | 353.83 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 298 |
a, b, c (Å) | 14.1896 (18), 15.881 (2), 10.3998 (10) |
β (°) | 132.13 (2) |
V (Å3) | 1738.0 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.89, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7216, 3127, 2050 |
Rint | 0.105 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.085, 0.240, 0.99 |
No. of reflections | 3127 |
No. of parameters | 226 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.29 |
Absolute structure | Flack (1983), 1551 Friedel pairs |
Absolute structure parameter | 0.07 (16) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).
Cg is the centroid of the C3–C8 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.82 | 1.97 | 2.649 (6) | 139 |
C21—H21A···Cgi | 0.93 | 2.87 | 3.770 (7) | 164 |
Symmetry code: (i) x, −y+1, z−1/2. |
Acknowledgements
This work was supported by a start-up grant from Hangzhou Normal University, China.
References
Devi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625–8627. Web of Science CrossRef CAS Google Scholar
Domling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168–3210. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997. Web of Science CSD CrossRef CAS Google Scholar
Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–8. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ugi, I. (1962). Angew. Chem. Int. Ed. Engl. 1, 8–21. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multi-component reactions (MCRs) (Hulme & Gore, 2003; Ugi, 1962) involving at least three starting materials in a one-pot reaction have attracted considerable attention in terms of saving both energy and raw materials (Devi & Bhuyan, 2004; Fu, et al. 2009). Compared to conventional multi-step organic syntheses, MCRs have merits over multi-step reactions that include the simplicity of a one-pot procedure and the buildup of complex molecules (Domling & Ugi, 2000). We report here the synthesis and crystal structure of the title compound, 1-((3-chlorophenyl)(morpholino)methyl)naphthalen-2-ol.
In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthylene ring system and the benzene ring is 77.86 (15)°. The H atom of hydroxyl is involved in strong intramolecular O—H···N hydrogen bonds (Table 1). Weak intermolecular C—H···π interaction is present in the crystal structure.