organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1775-o1776

2-tert-Butyl-6-(cyclo­hexyl­imino­meth­yl)-4-meth­­oxy­phenol

aDepartment of Catalyst Polymerization Engineering Faculty, Iran Polymer and Petrochemical Institute (ippi), PO Box 14965/115, 14185/485, Tehran, Iran, bChemistry Group Amirkabir University, Tehran, Iran, cDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad,, Iran, and dDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: R.Jamjah@ippi.ac.ir, M.nekoomansh@ippi.ac.ir

(Received 5 June 2011; accepted 15 June 2011; online 22 June 2011)

The asymmetric unit of the title Schiff base compound, C18H27NO2, contains two independent mol­ecules in which the C=N bond lengths are 1.278 (2) and 1.280 (2) Å and the cyclo­hexane rings adopt chair conformations. Intra­molecular O—H⋯N hydrogen bonding between hy­droxy and imine groups and weak C—H⋯O hydrogen bonds help to stabilize the mol­ecular structure.

Related literature

For general background to the synthesis and catalytic activity of the FI family of early transition metal olefin polymerization catalysts, see: Matsui & Fujita (2001[Matsui, S. & Fujita, T. (2001). Catal. Today, 66, 63-73.]); Matsui et al. (1999[Matsui, S., Tohi, S., Mitani, M., Saito, J., Makio, H., Tanaka, H., Nitabaru, M., Nakano, T. & Fujita, T. (1999). Chem. Lett. pp. 1065-1066.], 2001[Matsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Matsukawa, N., Takagi, Y., Tsuru, K., Nitabaru, M., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2001). J. Am. Chem. Soc. 123, 6847-6856.]); Makio et al. (2002[Makio, H., Kashiwa, N. & Fujita, T. (2002). Adv. Synth. Catal. 344, 477-493.]); Suzuki et al. (2006[Suzuki, Y., Tanaka, H., Oshiki, T., Takai, K. & Fujita, T. (2006). Chem. Asia J. 1, 878-887.]); Saito et al. (2002[Saito, J., Mitani, M., Matsui, S., Tohi, Y., Makio, H., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2002). Macromol. Chem. Phys. 203, 59-65.]); Parssinen et al. (2005[Parssinen, A., Luhtanen, T., Klinga, M., Pakkanen, T., Leskela, M. & Repo, T. (2005). Eur. J. Inorg. Chem. pp. 2100-2109.]). For background to the synthesis of Schiff base compounds, see: Hofsløkkn & Skattebøl (1999[Hofsløkkn, N. U. & Skattebøl, L. (1999). Acta Chem. Scand. 53, 258-262.]); Wang et al. (1994[Wang, R.-X., You, X.-Z., Meng, Q.-J., Mintz, E. A. & Bu, X.-R. (1994). Synth. Commun. 24, 1757-1760.]); Gregson et al. (2006[Gregson, C. K. A., Blackmore, I. J., Gibson, V. C., Long, N. J., Marshall, E. L. & White, A. J. P. (2006). Dalton Trans. pp. 3134-3140.]); Bigi et al. (2000[Bigi, F., Conforti, M. L., Maggi, R. & Sartori, G. (2000). Tetrahedron, 56, 2709-2712.]). For the synthesis of phen­oxy-imine ligands and their complexes, see: Matsukawa et al. (2001[Matsukawa, N., Matsui, S., Mitani, M., Saito, J., Tsuru, K., Kashiwa, N. & Fujita, T. (2001). J. Mol. Catal. A, 169, 99-104.]); Tohi et al. (2004[Tohi, Y., Nakano, T., Makio, H. Y., Matsui, S. K., Fujita, T. & Yamaguthi, T. (2004). Macromol. Chem. Phys. 205, 1179-1186.]); Makio et al. (2002[Makio, H., Kashiwa, N. & Fujita, T. (2002). Adv. Synth. Catal. 344, 477-493.]). For related structures, see: Hiller et al. (1993[Hiller, W., Nishinaga, A., Tsutsui, T. & Rieker, A. (1993). Acta Cryst. C49, 1357-1359.]); Darensbourg et al. (2005[Darensbourg, D. J., Mackiewicz, R. M. & Billodeaux, D. R. (2005). Organometallics, 24, 144-148.]).

[Scheme 1]

Experimental

Crystal data
  • C18H27NO2

  • Mr = 289.41

  • Triclinic, [P \overline 1]

  • a = 10.388 (2) Å

  • b = 13.325 (3) Å

  • c = 13.766 (3) Å

  • α = 111.37 (3)°

  • β = 108.31 (3)°

  • γ = 92.46 (3)°

  • V = 1657.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.45 × 0.45 × 0.30 mm

Data collection
  • Stoe IPDS II diffractometer

  • 18474 measured reflections

  • 8861 independent reflections

  • 6731 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.209

  • S = 1.09

  • 8861 reflections

  • 395 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (3) 1.77 (3) 2.5918 (19) 156 (3)
O3—H2⋯N2 0.90 (3) 1.73 (3) 2.5901 (19) 159 (3)
C5—H5B⋯O1 0.96 2.34 2.994 (2) 125
C6—H6B⋯O1 0.96 2.36 3.004 (2) 124
C23—H23B⋯O3 0.96 2.41 3.051 (2) 124
C24—H24B⋯O3 0.96 2.36 3.000 (2) 124

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the late 1990s' Fujita group discovered and developed a new family of early transition metal catalysts [FI catalysts] (Matsui & Fujita, 2001; Matsui et al., 2001; Makio et al., 2002). These new catalysts with two phenoxy-imine chelate ligands were discovered on the basis of, ligand oriented catalyst design concept, and show high activity for olefin polymerization (Matsui et al., 1999; Suzuki et al., 2006).

FI catalysts can produce a wide variety of new polymers whose are comparable to those produced by group 4 metallocen catalysts which are unobtainable with conventional Ziegler-Natta catalysts. FI catalysts are generally comprised of transition metals (Zr, Ti, etc) (Suzuki et al., 2006) and ligand(s) with general formula of L2MX2 (M= Transition metal, L = ancillary ligand(s), and X= monodentate anionic ligand such as halide or amide (Matsui & Fujita, 2001; Saito et al., 2002; Parssinen et al., 2005). The basic phenoxy-imine ligand systems can be divided into two bases reactant: primary amines and salicylaldehyde derivatives.

Usually amines and some salicylaldehyde derivatives commercially are available, but some of them such as 2-hydroxy-3-tert-butyl-5-methoxy benzaldehyde and the ones with desired substituents are not commercially available and can be synthesized by straight forward synthetic methods. Formylation at the 2-position of phenols can be performed using paraformaldehyde with many established methods in high yields (typically 70–80%). Electron donating substitueants such as methoxy group at the para position of phenoxy oxygen in benzene ring enhance the rate of formulation reaction. Salicylaldehydes and primary amines are condensed into Schiff bases under standard condensation condition which can obtain with high selectivity and yields (Hofsløkkn & Skattebøl, 1999; Wang et al., 1994; Gregson et al., 2006; Bigi et al., 2000). Generally, the overall synthesis requires fewer steps and gives higher yield than those for metallocences. Rational design of the phenoxy-imine ligand and its effect on activity, thermal stability and molecular weight capabilities and molecular weight distributions that could be achieved by varying combination of R1, R2 and R3 groups on the final ligand (Matsukawa et al., 2001; Tohi et al., 2004). Once again, designing the ligand frame work by addition of an electron-donating group in the R3 position, can be impart a large electronic influence on the Zirconium and strengthening the metal-ligand interactions (Makio et al., 2002).

Herein, we report synthesis and crystal structure of new schiff base compound ((E)-2-tert-butyl-6-((cyclohexylimino)methyl)-4-methoxyphenol). The asymmetric unit of the title compound is shown in Fig. 1 and contain two molecules of schiff base compound. The bond lengths and angles are comparable to those observed for schiff base ligands (Hiller et al., 1993; Darensbourg et al., 2005). In the crystal structure of title compound, there is intramolecular bifurcated C—H···O hydrogen bondings between two methyl from t-buthyl group and hydroxy group and also intramolecular O—H···N between hydroxy and nitrogen of imine part (Table 1 & Fig. 2).

Related literature top

For general background to the synthesis and catalytic activity of FI family of early

transition metal catalysts, see: Matsui & Fujita (2001); Matsui et al. (1999, 2001); Makio et al. (2002); Suzuki et al. (2006); Matsui & Fujita (2001); Saito et al. (2002); Parssinen et al. (2005). For background to the synthesis of Schiff base compounds, see: Hofsløkkn & Skattebøl (1999); Wang et al. (1994); Gregson et al. (2006); Bigi et al. (2000). For the synthesis of phenoxy-imine ligands and their complexes, see: Matsukawa et al. (2001); Tohi et al. (2004); Makio et al. (2002). For related structures, see: Hiller et al. (1993); Darensbourg et al. (2005).

Experimental top

Ligand synthesis was carried out under an atmosphere of nitrogen using oven-dried glassware. To a 100 ml flask thoroughly purged with nitrogen, 30 ml of ethanol, 1.90 g (12.0 mmol) of dried and fresh distilled cyclohexylamine and 2.08 g (10.0 mmol) of 5-methoxy 3 - t-butylsalicylaldehyde were introduced. After addition of 5 g of activated molecular sieve 3 Å, the mixture was stirred at room temperature for 12 h and then filtered. The molecular sieve 3 Å was washed with ethyl acetate (20 ml). The combined organic filtrates were concentrated in vacuum to afford a crude imine compound. Reaction solution was concentrated under reduced pressure and yellow salicylaldimine obtained. Then the product recrystallized with petroleum ether (m.p. 90°C).

Refinement top

Hydroxy H atoms were found in a difference Fourier map and refined isotropically without restraint. Other H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 to 0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The intramolecular C—H···O and O—H···N hydrogen bonds are shown as green dashed lines.
2-tert-Butyl-6-(cyclohexyliminomethyl)-4-methoxyphenol top
Crystal data top
C18H27NO2Z = 4
Mr = 289.41F(000) = 632
Triclinic, P1Dx = 1.160 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.388 (2) ÅCell parameters from 8861 reflections
b = 13.325 (3) Åθ = 2.2–29.2°
c = 13.766 (3) ŵ = 0.07 mm1
α = 111.37 (3)°T = 120 K
β = 108.31 (3)°Block, yellow
γ = 92.46 (3)°0.45 × 0.45 × 0.30 mm
V = 1657.8 (8) Å3
Data collection top
Stoe IPDS II
diffractometer
6731 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.095
Graphite monochromatorθmax = 29.2°, θmin = 2.2°
rotation method scansh = 1414
18474 measured reflectionsk = 1818
8861 independent reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1285P)2 + 0.3083P]
where P = (Fo2 + 2Fc2)/3
8861 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C18H27NO2γ = 92.46 (3)°
Mr = 289.41V = 1657.8 (8) Å3
Triclinic, P1Z = 4
a = 10.388 (2) ÅMo Kα radiation
b = 13.325 (3) ŵ = 0.07 mm1
c = 13.766 (3) ÅT = 120 K
α = 111.37 (3)°0.45 × 0.45 × 0.30 mm
β = 108.31 (3)°
Data collection top
Stoe IPDS II
diffractometer
6731 reflections with I > 2σ(I)
18474 measured reflectionsRint = 0.095
8861 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.59 e Å3
8861 reflectionsΔρmin = 0.51 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C160.5193 (2)0.86759 (17)0.75550 (16)0.0300 (4)
H16A0.60940.86610.80400.036*
H16B0.45850.88120.79800.036*
C150.5309 (2)0.95981 (16)0.71639 (17)0.0299 (4)
H15A0.57371.02810.78080.036*
H15B0.43930.96770.67640.036*
C220.0841 (2)0.92025 (15)0.75356 (17)0.0331 (4)
H22A0.00780.87550.68750.050*
H22B0.16570.92350.73540.050*
H22C0.06470.99280.78310.050*
C230.02620 (19)0.86686 (15)0.86736 (18)0.0288 (4)
H23A0.04580.93960.89480.043*
H23B0.01450.83740.92300.043*
H23C0.10130.82130.80080.043*
C90.5171 (2)0.77887 (18)0.01564 (17)0.0305 (4)
H9A0.46760.71750.01370.046*
H9B0.49350.77140.09150.046*
H9C0.49290.84530.02670.046*
C240.22712 (19)0.94703 (14)0.94596 (15)0.0252 (4)
H24A0.30980.94780.92880.038*
H24B0.23970.92101.00420.038*
H24C0.20701.01980.97020.038*
C340.3333 (2)0.47319 (16)1.27358 (16)0.0276 (4)
H34A0.30900.53971.31760.033*
H34B0.36440.43261.31990.033*
C170.4637 (2)0.75723 (16)0.65698 (17)0.0282 (4)
H17A0.36960.75580.61310.034*
H17B0.46310.69970.68430.034*
C210.10645 (18)0.87064 (13)0.84100 (14)0.0211 (3)
C350.2062 (2)0.40417 (15)1.17212 (16)0.0258 (4)
H35A0.13210.39051.19690.031*
H35B0.22770.33411.13280.031*
C330.44981 (19)0.50278 (16)1.23801 (16)0.0267 (4)
H33A0.52660.55061.30350.032*
H33B0.48150.43671.20160.032*
C140.6155 (2)0.93769 (14)0.64054 (16)0.0252 (4)
H14A0.71040.93960.68340.030*
H14B0.61440.99500.61270.030*
C180.55131 (19)0.73550 (14)0.58295 (15)0.0229 (3)
H18A0.64340.73030.62490.028*
H18B0.51130.66620.51940.028*
C51.10265 (18)0.69749 (15)0.36589 (16)0.0242 (3)
H5A1.06330.63140.29980.036*
H5B1.06300.69740.42010.036*
H5C1.20050.70160.39600.036*
C41.13992 (17)0.79552 (14)0.25165 (15)0.0231 (3)
H4A1.10030.72970.18530.035*
H4B1.23720.79800.28320.035*
H4C1.12440.85800.23330.035*
C320.40216 (18)0.55994 (14)1.15850 (15)0.0231 (3)
H32A0.47630.57321.13360.028*
H32B0.38150.63031.19810.028*
C61.13788 (18)0.90406 (15)0.44140 (15)0.0245 (4)
H6A1.23570.90780.47050.037*
H6B1.09970.90550.49690.037*
H6C1.11880.96560.42210.037*
C360.15883 (17)0.46204 (14)1.09267 (15)0.0220 (3)
H36A0.08210.41431.02710.026*
H36B0.12690.52791.12930.026*
C130.55966 (17)0.82658 (14)0.54196 (14)0.0197 (3)
H130.46730.82740.49440.024*
C310.27464 (17)0.49260 (13)1.05690 (13)0.0187 (3)
H310.29860.42561.01140.022*
C120.60610 (16)0.80873 (13)0.37989 (13)0.0175 (3)
H120.51480.81570.35090.021*
C20.91611 (15)0.79247 (12)0.28903 (13)0.0157 (3)
C200.13799 (16)0.75429 (12)0.79790 (14)0.0176 (3)
C31.07256 (16)0.79689 (13)0.33652 (14)0.0180 (3)
C280.18954 (16)0.53761 (13)0.71137 (13)0.0175 (3)
H280.20650.46670.68310.021*
C80.70950 (16)0.78842 (12)0.13850 (13)0.0165 (3)
C70.85104 (16)0.78786 (12)0.18216 (13)0.0164 (3)
H70.90350.78430.13760.020*
C190.16492 (16)0.69245 (12)0.86441 (13)0.0168 (3)
C250.13920 (17)0.70439 (13)0.69027 (14)0.0198 (3)
H250.12340.74400.64560.024*
C260.16305 (17)0.59721 (13)0.64589 (13)0.0184 (3)
C300.22574 (16)0.52199 (13)0.89036 (14)0.0180 (3)
H300.24560.45250.85970.022*
C290.19070 (16)0.58498 (12)0.82116 (13)0.0166 (3)
C100.63036 (16)0.79534 (12)0.20365 (13)0.0172 (3)
H100.53710.79790.17640.021*
C110.69178 (16)0.79842 (12)0.31176 (13)0.0165 (3)
C10.83340 (15)0.79518 (12)0.35442 (13)0.0159 (3)
O20.66130 (12)0.78253 (10)0.03121 (10)0.0212 (3)
O30.16646 (14)0.73745 (10)0.97098 (10)0.0220 (3)
O10.89028 (12)0.79569 (10)0.45748 (10)0.0209 (3)
O40.15796 (14)0.56103 (10)0.53771 (10)0.0244 (3)
N20.23021 (15)0.55850 (11)0.99129 (12)0.0199 (3)
N10.65112 (14)0.80861 (12)0.47775 (12)0.0195 (3)
C270.1861 (2)0.45401 (15)0.49089 (15)0.0269 (4)
H27A0.28040.45260.52890.040*
H27B0.17010.43440.41320.040*
H27C0.12660.40280.49900.040*
H20.189 (3)0.684 (3)0.995 (3)0.055 (9)*
H10.824 (3)0.806 (2)0.485 (2)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.0371 (10)0.0400 (10)0.0257 (9)0.0166 (8)0.0208 (8)0.0178 (8)
C150.0407 (11)0.0292 (9)0.0264 (9)0.0154 (8)0.0195 (8)0.0109 (7)
C220.0500 (12)0.0195 (8)0.0288 (9)0.0098 (8)0.0078 (8)0.0134 (7)
C230.0243 (8)0.0204 (8)0.0370 (10)0.0088 (6)0.0076 (7)0.0086 (7)
C90.0233 (9)0.0467 (11)0.0256 (9)0.0104 (8)0.0059 (7)0.0208 (8)
C240.0262 (8)0.0179 (7)0.0251 (8)0.0022 (6)0.0044 (7)0.0059 (6)
C340.0337 (9)0.0342 (9)0.0250 (9)0.0167 (8)0.0136 (7)0.0188 (8)
C170.0282 (9)0.0335 (9)0.0332 (10)0.0061 (7)0.0178 (8)0.0186 (8)
C210.0248 (8)0.0148 (7)0.0202 (8)0.0044 (6)0.0040 (6)0.0063 (6)
C350.0285 (9)0.0285 (8)0.0302 (9)0.0068 (7)0.0149 (7)0.0184 (7)
C330.0214 (8)0.0331 (9)0.0257 (9)0.0088 (7)0.0038 (7)0.0152 (7)
C140.0312 (9)0.0206 (7)0.0274 (9)0.0050 (6)0.0153 (7)0.0093 (7)
C180.0258 (8)0.0201 (7)0.0259 (8)0.0044 (6)0.0141 (7)0.0082 (6)
C50.0206 (8)0.0254 (8)0.0324 (9)0.0113 (6)0.0111 (7)0.0157 (7)
C40.0168 (7)0.0261 (8)0.0281 (9)0.0048 (6)0.0106 (6)0.0101 (7)
C320.0199 (8)0.0242 (8)0.0255 (8)0.0023 (6)0.0056 (6)0.0124 (7)
C60.0172 (7)0.0251 (8)0.0245 (8)0.0007 (6)0.0053 (6)0.0047 (7)
C360.0190 (7)0.0246 (8)0.0221 (8)0.0013 (6)0.0043 (6)0.0118 (6)
C130.0175 (7)0.0255 (8)0.0209 (8)0.0067 (6)0.0111 (6)0.0104 (6)
C310.0232 (7)0.0167 (7)0.0177 (7)0.0060 (6)0.0069 (6)0.0083 (6)
C120.0157 (7)0.0184 (7)0.0193 (7)0.0037 (5)0.0073 (6)0.0073 (6)
C20.0143 (6)0.0136 (6)0.0196 (7)0.0027 (5)0.0068 (6)0.0063 (5)
C200.0163 (7)0.0160 (7)0.0203 (7)0.0028 (5)0.0046 (6)0.0086 (6)
C30.0137 (7)0.0174 (7)0.0233 (8)0.0041 (5)0.0075 (6)0.0076 (6)
C280.0168 (7)0.0165 (7)0.0190 (7)0.0032 (5)0.0068 (6)0.0063 (6)
C80.0195 (7)0.0151 (6)0.0167 (7)0.0038 (5)0.0063 (6)0.0083 (5)
C70.0186 (7)0.0136 (6)0.0193 (7)0.0036 (5)0.0095 (6)0.0067 (5)
C190.0160 (7)0.0171 (7)0.0166 (7)0.0026 (5)0.0053 (5)0.0063 (6)
C250.0215 (7)0.0186 (7)0.0200 (8)0.0021 (6)0.0055 (6)0.0103 (6)
C260.0196 (7)0.0200 (7)0.0172 (7)0.0023 (6)0.0079 (6)0.0081 (6)
C300.0165 (7)0.0164 (6)0.0216 (7)0.0028 (5)0.0065 (6)0.0084 (6)
C290.0145 (6)0.0166 (7)0.0192 (7)0.0023 (5)0.0050 (5)0.0084 (6)
C100.0163 (7)0.0171 (7)0.0189 (7)0.0042 (5)0.0065 (6)0.0076 (6)
C110.0158 (7)0.0168 (7)0.0179 (7)0.0032 (5)0.0071 (6)0.0072 (6)
C10.0155 (7)0.0156 (6)0.0155 (7)0.0030 (5)0.0045 (5)0.0060 (5)
O20.0212 (6)0.0271 (6)0.0199 (6)0.0070 (5)0.0079 (5)0.0134 (5)
O30.0317 (7)0.0204 (6)0.0172 (6)0.0101 (5)0.0109 (5)0.0085 (5)
O10.0168 (5)0.0301 (6)0.0193 (6)0.0075 (5)0.0079 (5)0.0121 (5)
O40.0354 (7)0.0228 (6)0.0183 (6)0.0062 (5)0.0132 (5)0.0087 (5)
N20.0233 (7)0.0183 (6)0.0202 (7)0.0054 (5)0.0073 (5)0.0100 (5)
N10.0165 (6)0.0246 (7)0.0202 (7)0.0049 (5)0.0095 (5)0.0095 (5)
C270.0298 (9)0.0298 (9)0.0209 (8)0.0104 (7)0.0117 (7)0.0068 (7)
Geometric parameters (Å, º) top
C16—C171.522 (3)C4—H4B0.9600
C16—C151.525 (3)C4—H4C0.9600
C16—H16A0.9700C32—C311.528 (3)
C16—H16B0.9700C32—H32A0.9700
C15—C141.525 (3)C32—H32B0.9700
C15—H15A0.9700C6—C31.544 (2)
C15—H15B0.9700C6—H6A0.9600
C22—C211.535 (3)C6—H6B0.9600
C22—H22A0.9600C6—H6C0.9600
C22—H22B0.9600C36—C311.527 (2)
C22—H22C0.9600C36—H36A0.9700
C23—C211.535 (3)C36—H36B0.9700
C23—H23A0.9600C13—N11.461 (2)
C23—H23B0.9600C13—H130.9800
C23—H23C0.9600C31—N21.466 (2)
C9—O21.424 (2)C31—H310.9800
C9—H9A0.9600C12—N11.280 (2)
C9—H9B0.9600C12—C111.460 (2)
C9—H9C0.9600C12—H120.9300
C24—C211.541 (3)C2—C71.390 (2)
C24—H24A0.9600C2—C11.419 (2)
C24—H24B0.9600C2—C31.539 (2)
C24—H24C0.9600C20—C251.390 (2)
C34—C331.527 (3)C20—C191.416 (2)
C34—C351.530 (3)C28—C261.380 (2)
C34—H34A0.9700C28—C291.406 (2)
C34—H34B0.9700C28—H280.9300
C17—C181.530 (2)C8—O21.373 (2)
C17—H17A0.9700C8—C101.378 (2)
C17—H17B0.9700C8—C71.404 (2)
C21—C201.536 (2)C7—H70.9300
C35—C361.530 (2)C19—O31.362 (2)
C35—H35A0.9700C19—C291.410 (2)
C35—H35B0.9700C25—C261.401 (2)
C33—C321.524 (3)C25—H250.9300
C33—H33A0.9700C26—O41.370 (2)
C33—H33B0.9700C30—N21.278 (2)
C14—C131.529 (3)C30—C291.461 (2)
C14—H14A0.9700C30—H300.9300
C14—H14B0.9700C10—C111.407 (2)
C18—C131.523 (2)C10—H100.9300
C18—H18A0.9700C11—C11.411 (2)
C18—H18B0.9700C1—O11.3521 (19)
C5—C31.537 (2)O3—H20.90 (3)
C5—H5A0.9600O1—H10.88 (3)
C5—H5B0.9600O4—C271.421 (2)
C5—H5C0.9600C27—H27A0.9600
C4—C31.534 (2)C27—H27B0.9600
C4—H4A0.9600C27—H27C0.9600
C17—C16—C15111.12 (16)C33—C32—C31112.33 (14)
C17—C16—H16A109.4C33—C32—H32A109.1
C15—C16—H16A109.4C31—C32—H32A109.1
C17—C16—H16B109.4C33—C32—H32B109.1
C15—C16—H16B109.4C31—C32—H32B109.1
H16A—C16—H16B108.0H32A—C32—H32B107.9
C16—C15—C14111.66 (15)C3—C6—H6A109.5
C16—C15—H15A109.3C3—C6—H6B109.5
C14—C15—H15A109.3H6A—C6—H6B109.5
C16—C15—H15B109.3C3—C6—H6C109.5
C14—C15—H15B109.3H6A—C6—H6C109.5
H15A—C15—H15B108.0H6B—C6—H6C109.5
C21—C22—H22A109.5C31—C36—C35111.78 (14)
C21—C22—H22B109.5C31—C36—H36A109.3
H22A—C22—H22B109.5C35—C36—H36A109.3
C21—C22—H22C109.5C31—C36—H36B109.3
H22A—C22—H22C109.5C35—C36—H36B109.3
H22B—C22—H22C109.5H36A—C36—H36B107.9
C21—C23—H23A109.5N1—C13—C18110.41 (13)
C21—C23—H23B109.5N1—C13—C14108.41 (14)
H23A—C23—H23B109.5C18—C13—C14110.51 (15)
C21—C23—H23C109.5N1—C13—H13109.2
H23A—C23—H23C109.5C18—C13—H13109.2
H23B—C23—H23C109.5C14—C13—H13109.2
O2—C9—H9A109.5N2—C31—C36110.14 (14)
O2—C9—H9B109.5N2—C31—C32108.00 (13)
H9A—C9—H9B109.5C36—C31—C32110.85 (14)
O2—C9—H9C109.5N2—C31—H31109.3
H9A—C9—H9C109.5C36—C31—H31109.3
H9B—C9—H9C109.5C32—C31—H31109.3
C21—C24—H24A109.5N1—C12—C11122.93 (15)
C21—C24—H24B109.5N1—C12—H12118.5
H24A—C24—H24B109.5C11—C12—H12118.5
C21—C24—H24C109.5C7—C2—C1117.59 (14)
H24A—C24—H24C109.5C7—C2—C3121.64 (14)
H24B—C24—H24C109.5C1—C2—C3120.76 (14)
C33—C34—C35111.12 (15)C25—C20—C19116.99 (14)
C33—C34—H34A109.4C25—C20—C21120.97 (15)
C35—C34—H34A109.4C19—C20—C21122.04 (15)
C33—C34—H34B109.4C4—C3—C5107.90 (14)
C35—C34—H34B109.4C4—C3—C2111.20 (14)
H34A—C34—H34B108.0C5—C3—C2110.35 (13)
C16—C17—C18111.30 (15)C4—C3—C6107.98 (14)
C16—C17—H17A109.4C5—C3—C6110.16 (15)
C18—C17—H17A109.4C2—C3—C6109.21 (13)
C16—C17—H17B109.4C26—C28—C29119.45 (14)
C18—C17—H17B109.4C26—C28—H28120.3
H17A—C17—H17B108.0C29—C28—H28120.3
C23—C21—C22107.67 (16)O2—C8—C10125.03 (15)
C23—C21—C20109.33 (14)O2—C8—C7115.45 (14)
C22—C21—C20111.61 (15)C10—C8—C7119.53 (15)
C23—C21—C24110.20 (15)C2—C7—C8122.81 (14)
C22—C21—C24107.34 (15)C2—C7—H7118.6
C20—C21—C24110.64 (14)C8—C7—H7118.6
C34—C35—C36111.26 (15)O3—C19—C29119.94 (14)
C34—C35—H35A109.4O3—C19—C20119.64 (14)
C36—C35—H35A109.4C29—C19—C20120.42 (15)
C34—C35—H35B109.4C20—C25—C26123.13 (15)
C36—C35—H35B109.4C20—C25—H25118.4
H35A—C35—H35B108.0C26—C25—H25118.4
C32—C33—C34111.13 (15)O4—C26—C28125.54 (15)
C32—C33—H33A109.4O4—C26—C25114.97 (15)
C34—C33—H33A109.4C28—C26—C25119.50 (15)
C32—C33—H33B109.4N2—C30—C29122.71 (15)
C34—C33—H33B109.4N2—C30—H30118.6
H33A—C33—H33B108.0C29—C30—H30118.6
C15—C14—C13111.83 (15)C28—C29—C19120.51 (15)
C15—C14—H14A109.3C28—C29—C30118.24 (14)
C13—C14—H14A109.3C19—C29—C30121.19 (15)
C15—C14—H14B109.3C8—C10—C11119.47 (14)
C13—C14—H14B109.3C8—C10—H10120.3
H14A—C14—H14B107.9C11—C10—H10120.3
C13—C18—C17111.04 (14)C10—C11—C1120.86 (14)
C13—C18—H18A109.4C10—C11—C12118.20 (14)
C17—C18—H18A109.4C1—C11—C12120.91 (14)
C13—C18—H18B109.4O1—C1—C11120.17 (14)
C17—C18—H18B109.4O1—C1—C2120.15 (14)
H18A—C18—H18B108.0C11—C1—C2119.68 (14)
C3—C5—H5A109.5C8—O2—C9116.08 (14)
C3—C5—H5B109.5C19—O3—H2102 (2)
H5A—C5—H5B109.5C1—O1—H1103.8 (19)
C3—C5—H5C109.5C26—O4—C27116.66 (14)
H5A—C5—H5C109.5C30—N2—C31119.08 (14)
H5B—C5—H5C109.5C12—N1—C13118.63 (14)
C3—C4—H4A109.5O4—C27—H27A109.5
C3—C4—H4B109.5O4—C27—H27B109.5
H4A—C4—H4B109.5H27A—C27—H27B109.5
C3—C4—H4C109.5O4—C27—H27C109.5
H4A—C4—H4C109.5H27A—C27—H27C109.5
H4B—C4—H4C109.5H27B—C27—H27C109.5
C17—C16—C15—C1454.2 (2)C21—C20—C25—C26177.91 (15)
C15—C16—C17—C1855.4 (2)C29—C28—C26—O4179.58 (15)
C33—C34—C35—C3655.5 (2)C29—C28—C26—C250.7 (2)
C35—C34—C33—C3255.2 (2)C20—C25—C26—O4178.90 (15)
C16—C15—C14—C1354.4 (2)C20—C25—C26—C281.3 (3)
C16—C17—C18—C1356.8 (2)C26—C28—C29—C190.1 (2)
C34—C33—C32—C3155.0 (2)C26—C28—C29—C30177.03 (14)
C34—C35—C36—C3155.2 (2)O3—C19—C29—C28179.94 (14)
C17—C18—C13—N1176.14 (14)C20—C19—C29—C280.2 (2)
C17—C18—C13—C1456.2 (2)O3—C19—C29—C302.9 (2)
C15—C14—C13—N1176.39 (15)C20—C19—C29—C30176.78 (14)
C15—C14—C13—C1855.3 (2)N2—C30—C29—C28179.60 (15)
C35—C36—C31—N2173.66 (14)N2—C30—C29—C192.5 (2)
C35—C36—C31—C3254.19 (19)O2—C8—C10—C11178.57 (14)
C33—C32—C31—N2175.06 (14)C7—C8—C10—C111.9 (2)
C33—C32—C31—C3654.31 (19)C8—C10—C11—C10.4 (2)
C23—C21—C20—C25116.85 (18)C8—C10—C11—C12178.38 (14)
C22—C21—C20—C252.2 (2)N1—C12—C11—C10177.62 (15)
C24—C21—C20—C25121.60 (17)N1—C12—C11—C14.4 (2)
C23—C21—C20—C1962.2 (2)C10—C11—C1—O1178.49 (14)
C22—C21—C20—C19178.83 (16)C12—C11—C1—O13.6 (2)
C24—C21—C20—C1959.4 (2)C10—C11—C1—C22.1 (2)
C7—C2—C3—C40.0 (2)C12—C11—C1—C2175.82 (14)
C1—C2—C3—C4178.69 (14)C7—C2—C1—O1177.60 (13)
C7—C2—C3—C5119.66 (16)C3—C2—C1—O13.6 (2)
C1—C2—C3—C561.61 (19)C7—C2—C1—C113.0 (2)
C7—C2—C3—C6119.11 (16)C3—C2—C1—C11175.78 (13)
C1—C2—C3—C659.63 (19)C10—C8—O2—C92.7 (2)
C1—C2—C7—C81.5 (2)C7—C8—O2—C9177.73 (15)
C3—C2—C7—C8177.24 (14)C28—C26—O4—C271.7 (2)
O2—C8—C7—C2179.48 (13)C25—C26—O4—C27178.01 (15)
C10—C8—C7—C20.9 (2)C29—C30—N2—C31176.24 (14)
C25—C20—C19—O3179.36 (14)C36—C31—N2—C30118.58 (17)
C21—C20—C19—O31.6 (2)C32—C31—N2—C30120.23 (16)
C25—C20—C19—C290.4 (2)C11—C12—N1—C13176.05 (14)
C21—C20—C19—C29178.70 (14)C18—C13—N1—C12127.20 (17)
C19—C20—C25—C261.2 (2)C14—C13—N1—C12111.61 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (3)1.77 (3)2.5918 (19)156 (3)
O3—H2···N20.90 (3)1.73 (3)2.5901 (19)159 (3)
C5—H5B···O10.962.342.994 (2)125
C6—H6B···O10.962.363.004 (2)124
C23—H23B···O30.962.413.051 (2)124
C24—H24B···O30.962.363.000 (2)124

Experimental details

Crystal data
Chemical formulaC18H27NO2
Mr289.41
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.388 (2), 13.325 (3), 13.766 (3)
α, β, γ (°)111.37 (3), 108.31 (3), 92.46 (3)
V3)1657.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.45 × 0.45 × 0.30
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18474, 8861, 6731
Rint0.095
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.209, 1.09
No. of reflections8861
No. of parameters395
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.51

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (3)1.77 (3)2.5918 (19)156 (3)
O3—H2···N20.90 (3)1.73 (3)2.5901 (19)159 (3)
C5—H5B···O10.962.342.994 (2)125
C6—H6B···O10.962.363.004 (2)124
C23—H23B···O30.962.413.051 (2)124
C24—H24B···O30.962.363.000 (2)124
 

Acknowledgements

We are grateful to the Iran Polymer and Petrochemical Institute (ippi) for financial support.

References

First citationBigi, F., Conforti, M. L., Maggi, R. & Sartori, G. (2000). Tetrahedron, 56, 2709–2712.  CrossRef CAS Google Scholar
First citationDarensbourg, D. J., Mackiewicz, R. M. & Billodeaux, D. R. (2005). Organometallics, 24, 144–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGregson, C. K. A., Blackmore, I. J., Gibson, V. C., Long, N. J., Marshall, E. L. & White, A. J. P. (2006). Dalton Trans. pp. 3134–3140.  CrossRef Google Scholar
First citationHiller, W., Nishinaga, A., Tsutsui, T. & Rieker, A. (1993). Acta Cryst. C49, 1357–1359.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHofsløkkn, N. U. & Skattebøl, L. (1999). Acta Chem. Scand. 53, 258–262.  Google Scholar
First citationMakio, H., Kashiwa, N. & Fujita, T. (2002). Adv. Synth. Catal. 344, 477–493.  CrossRef CAS Google Scholar
First citationMatsui, S. & Fujita, T. (2001). Catal. Today, 66, 63–73.  Web of Science CrossRef CAS Google Scholar
First citationMatsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Matsukawa, N., Takagi, Y., Tsuru, K., Nitabaru, M., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2001). J. Am. Chem. Soc. 123, 6847–6856.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatsui, S., Tohi, S., Mitani, M., Saito, J., Makio, H., Tanaka, H., Nitabaru, M., Nakano, T. & Fujita, T. (1999). Chem. Lett. pp. 1065–1066.  Web of Science CSD CrossRef Google Scholar
First citationMatsukawa, N., Matsui, S., Mitani, M., Saito, J., Tsuru, K., Kashiwa, N. & Fujita, T. (2001). J. Mol. Catal. A, 169, 99-104.  CrossRef CAS Google Scholar
First citationParssinen, A., Luhtanen, T., Klinga, M., Pakkanen, T., Leskela, M. & Repo, T. (2005). Eur. J. Inorg. Chem. pp. 2100–2109.  Google Scholar
First citationSaito, J., Mitani, M., Matsui, S., Tohi, Y., Makio, H., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2002). Macromol. Chem. Phys. 203, 59–65.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuzuki, Y., Tanaka, H., Oshiki, T., Takai, K. & Fujita, T. (2006). Chem. Asia J. 1, 878–887.  CrossRef CAS Google Scholar
First citationTohi, Y., Nakano, T., Makio, H. Y., Matsui, S. K., Fujita, T. & Yamaguthi, T. (2004). Macromol. Chem. Phys. 205, 1179–1186.  CrossRef CAS Google Scholar
First citationWang, R.-X., You, X.-Z., Meng, Q.-J., Mintz, E. A. & Bu, X.-R. (1994). Synth. Commun. 24, 1757–1760.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1775-o1776
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds