organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­methyl­ammonium) thio­sulfate tetra­hydrate

aKey Laboratory of Polymer Materials of Gansu Province, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 June 2011; accepted 6 June 2011; online 18 June 2011)

The anion of the title salt, 2C4H12N+·S2O32−·4H2O, possesses approximate C3v symmetry. The water mol­ecules themselves engage in hydrogen bonding, forming a ribbon running along the a axis; adjacent chains are linked to the thio­sulfate anions by hydrogen bonds, forming a three-dimensional network. The cavities in the network are occupied by the tetra­methyl­ammonium counter ions.

Related literature

For tetra­ethyl­ammonium thio­sulfate dihydrate, see: Leyten et al. (1988[Leyten, W., Rettig, S. J. & Trotter, J. (1988). Acta Cryst. C44, 1749-1751.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H12N+·S2O32−·4H2O

  • Mr = 332.48

  • Monoclinic, P 21 /n

  • a = 8.1869 (1) Å

  • b = 15.4342 (2) Å

  • c = 14.0867 (2) Å

  • β = 94.074 (1)°

  • V = 1775.47 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 130 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.953

  • 11725 measured reflections

  • 4080 independent reflections

  • 3531 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.02

  • 4080 reflections

  • 204 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O1 0.83 (1) 1.88 (1) 2.706 (3) 174 (3)
O1W—H12⋯O3W 0.84 (2) 1.92 (2) 2.758 (2) 178 (1)
O2W—H21⋯O1W 0.84 (2) 1.86 (2) 2.689 (2) 172 (2)
O2W—H22⋯O4W 0.84 (2) 1.90 (3) 2.736 (2) 173 (3)
O3W—H31⋯O2i 0.83 (2) 1.93 (2) 2.759 (2) 172 (2)
O3W—H32⋯O2Wii 0.84 (2) 1.88 (2) 2.713 (2) 173 (2)
O4W—H41⋯S2iii 0.83 (2) 2.51 (2) 3.3280 (19) 170 (2)
O4W—H42⋯O3Wiii 0.83 (2) 1.93 (2) 2.760 (2) 179 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The thiosulfate anion of tetramethylammonium thiosulfate tetrahydrate (Scheme I, Fig. 1) resulted from the decomposition of 1,2-hydrazinedicarbothioamide under basic conditions. The anion of the salt, tetramethylammonium thiosulfate tetrahydrate, possesses approximate C3v symmetry. The four water molecules themselves engage in hydrogen bonding to form a ribbon running along the a-axis of the monoclinic unit cell; adjacent chains are linked to the thiosulfate anion by hydrogen bonds to form a three-dimensional network. The cavities in the network are occupied by the ammonium counterions. Tetraethylammonium thiosulfate exists as a dihydrate; in this salt, the sulfur-sulfur bond is 2.028 (1) Å (Leyten et al., 1988).

Related literature top

For tetraethylammonium thiosulfate dihydrate, see: Leyten et al. (1988).

Experimental top

1,2-Hydrazinedicarbothioamide (0.25 mmol, 0.038 g) was dissolved in tetramethylammonium hydroxide (25% aqueous solution) in a 1:2 molar ratio. A small quantity of water-ethanol (1:2) was added to dissolve the reactants completely. The mixture was set aside for the growth of colorless crystals, which separated after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.5U(C).

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 2(CH3)4N+ S2O32-.4H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Ribbon motif arising from hydrogen bonds involving water molecules.
Bis(tetramethylammonium) thiosulfate tetrahydrate top
Crystal data top
2C4H12N+·S2O32·4H2OF(000) = 728
Mr = 332.48Dx = 1.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5675 reflections
a = 8.1869 (1) Åθ = 2.8–27.6°
b = 15.4342 (2) ŵ = 0.33 mm1
c = 14.0867 (2) ÅT = 130 K
β = 94.074 (1)°Block, colorless
V = 1775.47 (4) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4080 independent reflections
Radiation source: fine-focus sealed tube3531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.923, Tmax = 0.953k = 2020
11725 measured reflectionsl = 1812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0501P)2 + 2.4726P]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.74 e Å3
12 restraintsΔρmin = 0.26 e Å3
Crystal data top
2C4H12N+·S2O32·4H2OV = 1775.47 (4) Å3
Mr = 332.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1869 (1) ŵ = 0.33 mm1
b = 15.4342 (2) ÅT = 130 K
c = 14.0867 (2) Å0.25 × 0.20 × 0.15 mm
β = 94.074 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4080 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3531 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.953Rint = 0.019
11725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04512 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.74 e Å3
4080 reflectionsΔρmin = 0.26 e Å3
204 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69577 (6)0.66503 (3)0.67106 (3)0.02068 (13)
S20.83493 (9)0.67111 (4)0.56042 (5)0.04154 (18)
O10.5466 (2)0.71568 (13)0.64692 (18)0.0556 (6)
O20.6474 (3)0.57509 (11)0.68608 (12)0.0437 (5)
O30.7837 (3)0.70123 (13)0.75481 (13)0.0495 (5)
O1W0.4917 (2)0.88844 (12)0.63615 (14)0.0384 (4)
O2W0.2208 (2)0.92082 (12)0.52239 (12)0.0346 (4)
O3W0.7668 (2)0.99207 (10)0.64424 (12)0.0322 (4)
O4W0.0083 (2)0.85939 (12)0.63760 (13)0.0353 (4)
N10.7309 (2)0.37242 (11)0.56622 (11)0.0223 (3)
N21.2319 (2)0.64015 (13)0.83568 (12)0.0277 (4)
C10.7226 (3)0.43773 (15)0.48818 (16)0.0361 (5)
H1A0.71220.49580.51520.054*
H1B0.62740.42570.44400.054*
H1C0.82260.43460.45400.054*
C20.8740 (3)0.39114 (17)0.63428 (16)0.0344 (5)
H2A0.86280.44940.66080.052*
H2B0.97490.38800.60100.052*
H2C0.87850.34840.68590.052*
C30.5774 (3)0.37662 (15)0.61729 (16)0.0301 (5)
H3A0.56610.43460.64440.045*
H3B0.58230.33350.66850.045*
H3C0.48310.36450.57250.045*
C40.7481 (3)0.28336 (14)0.52585 (16)0.0309 (5)
H4A0.65410.27110.48080.046*
H4B0.75200.24070.57750.046*
H4C0.84920.28000.49280.046*
C51.2059 (4)0.5696 (2)0.76359 (19)0.0487 (7)
H5A1.21130.51320.79570.073*
H5B1.29110.57270.71830.073*
H5C1.09810.57660.72950.073*
C61.2232 (3)0.72610 (19)0.7873 (2)0.0452 (7)
H6A1.11510.73320.75360.068*
H6B1.30790.72950.74170.068*
H6C1.24070.77210.83490.068*
C71.3963 (3)0.62940 (17)0.88745 (16)0.0337 (5)
H7A1.40210.57280.91890.051*
H7B1.41320.67530.93530.051*
H7C1.48150.63310.84210.051*
C81.1031 (3)0.63532 (18)0.90535 (17)0.0374 (5)
H8A1.10800.57860.93680.056*
H8B0.99500.64310.87190.056*
H8C1.12170.68110.95320.056*
H110.515 (3)0.8363 (7)0.641 (2)0.036 (8)*
H120.576 (2)0.9191 (13)0.638 (2)0.058 (10)*
H210.3104 (18)0.912 (2)0.5532 (18)0.046 (8)*
H220.145 (2)0.903 (3)0.554 (2)0.085 (14)*
H310.791 (4)1.0218 (15)0.6926 (11)0.049 (9)*
H320.768 (5)1.0224 (17)0.5952 (11)0.076 (12)*
H410.053 (3)0.8120 (9)0.625 (2)0.053 (9)*
H420.077 (3)0.8988 (12)0.640 (2)0.055 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0216 (2)0.0191 (2)0.0214 (2)0.00144 (18)0.00176 (17)0.00134 (17)
S20.0512 (4)0.0395 (3)0.0368 (3)0.0140 (3)0.0236 (3)0.0079 (3)
O10.0277 (10)0.0471 (11)0.0919 (16)0.0091 (8)0.0034 (10)0.0030 (11)
O20.0689 (13)0.0263 (8)0.0374 (9)0.0122 (8)0.0146 (9)0.0000 (7)
O30.0599 (13)0.0547 (12)0.0332 (9)0.0133 (10)0.0017 (9)0.0143 (8)
O1W0.0280 (9)0.0380 (10)0.0478 (10)0.0030 (8)0.0066 (7)0.0038 (8)
O2W0.0292 (9)0.0409 (9)0.0332 (8)0.0024 (7)0.0026 (7)0.0054 (7)
O3W0.0383 (9)0.0256 (8)0.0327 (8)0.0050 (7)0.0021 (7)0.0009 (7)
O4W0.0325 (9)0.0321 (9)0.0413 (9)0.0017 (7)0.0022 (7)0.0032 (7)
N10.0268 (9)0.0203 (8)0.0198 (8)0.0010 (7)0.0009 (6)0.0012 (6)
N20.0214 (9)0.0385 (10)0.0233 (8)0.0043 (8)0.0016 (7)0.0029 (7)
C10.0504 (15)0.0282 (11)0.0295 (11)0.0031 (10)0.0016 (10)0.0086 (9)
C20.0273 (11)0.0459 (13)0.0294 (11)0.0015 (10)0.0028 (9)0.0093 (10)
C30.0276 (11)0.0300 (11)0.0334 (11)0.0010 (9)0.0073 (9)0.0009 (9)
C40.0390 (13)0.0214 (10)0.0326 (11)0.0012 (9)0.0045 (9)0.0062 (8)
C50.0539 (17)0.0598 (18)0.0321 (12)0.0035 (14)0.0000 (11)0.0122 (12)
C60.0370 (14)0.0514 (16)0.0482 (15)0.0112 (12)0.0110 (11)0.0238 (13)
C70.0226 (11)0.0459 (13)0.0321 (11)0.0077 (10)0.0022 (9)0.0019 (10)
C80.0278 (12)0.0495 (14)0.0364 (12)0.0050 (10)0.0116 (9)0.0074 (11)
Geometric parameters (Å, º) top
S1—O31.4496 (18)C1—H1C0.9800
S1—O21.4631 (17)C2—H2A0.9800
S1—O11.4696 (19)C2—H2B0.9800
S1—S21.9970 (8)C2—H2C0.9800
O1W—H110.828 (9)C3—H3A0.9800
O1W—H120.834 (10)C3—H3B0.9800
O2W—H210.837 (10)C3—H3C0.9800
O2W—H220.841 (10)C4—H4A0.9800
O3W—H310.834 (10)C4—H4B0.9800
O3W—H320.835 (10)C4—H4C0.9800
O4W—H410.831 (10)C5—H5A0.9800
O4W—H420.832 (10)C5—H5B0.9800
N1—C21.488 (3)C5—H5C0.9800
N1—C11.489 (3)C6—H6A0.9800
N1—C31.493 (3)C6—H6B0.9800
N1—C41.498 (3)C6—H6C0.9800
N2—C61.490 (3)C7—H7A0.9800
N2—C81.493 (3)C7—H7B0.9800
N2—C71.494 (3)C7—H7C0.9800
N2—C51.494 (3)C8—H8A0.9800
C1—H1A0.9800C8—H8B0.9800
C1—H1B0.9800C8—H8C0.9800
O3—S1—O2111.83 (11)N1—C3—H3B109.5
O3—S1—O1109.87 (13)H3A—C3—H3B109.5
O2—S1—O1108.00 (12)N1—C3—H3C109.5
O3—S1—S2109.83 (9)H3A—C3—H3C109.5
O2—S1—S2109.44 (8)H3B—C3—H3C109.5
O1—S1—S2107.78 (10)N1—C4—H4A109.5
H11—O1W—H12111.2 (16)N1—C4—H4B109.5
H21—O2W—H22108.9 (16)H4A—C4—H4B109.5
H31—O3W—H32110.5 (16)N1—C4—H4C109.5
H41—O4W—H42111.3 (16)H4A—C4—H4C109.5
C2—N1—C1109.68 (18)H4B—C4—H4C109.5
C2—N1—C3109.39 (16)N2—C5—H5A109.5
C1—N1—C3109.27 (17)N2—C5—H5B109.5
C2—N1—C4109.40 (17)H5A—C5—H5B109.5
C1—N1—C4109.96 (16)N2—C5—H5C109.5
C3—N1—C4109.11 (17)H5A—C5—H5C109.5
C6—N2—C8109.37 (19)H5B—C5—H5C109.5
C6—N2—C7109.53 (19)N2—C6—H6A109.5
C8—N2—C7109.12 (17)N2—C6—H6B109.5
C6—N2—C5109.8 (2)H6A—C6—H6B109.5
C8—N2—C5109.7 (2)N2—C6—H6C109.5
C7—N2—C5109.33 (19)H6A—C6—H6C109.5
N1—C1—H1A109.5H6B—C6—H6C109.5
N1—C1—H1B109.5N2—C7—H7A109.5
H1A—C1—H1B109.5N2—C7—H7B109.5
N1—C1—H1C109.5H7A—C7—H7B109.5
H1A—C1—H1C109.5N2—C7—H7C109.5
H1B—C1—H1C109.5H7A—C7—H7C109.5
N1—C2—H2A109.5H7B—C7—H7C109.5
N1—C2—H2B109.5N2—C8—H8A109.5
H2A—C2—H2B109.5N2—C8—H8B109.5
N1—C2—H2C109.5H8A—C8—H8B109.5
H2A—C2—H2C109.5N2—C8—H8C109.5
H2B—C2—H2C109.5H8A—C8—H8C109.5
N1—C3—H3A109.5H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O10.83 (1)1.88 (1)2.706 (3)174 (3)
O1W—H12···O3W0.84 (2)1.92 (2)2.758 (2)178 (1)
O2W—H21···O1W0.84 (2)1.86 (2)2.689 (2)172 (2)
O2W—H22···O4W0.84 (2)1.90 (3)2.736 (2)173 (3)
O3W—H31···O2i0.83 (2)1.93 (2)2.759 (2)172 (2)
O3W—H32···O2Wii0.84 (2)1.88 (2)2.713 (2)173 (2)
O4W—H41···S2iii0.83 (2)2.51 (2)3.3280 (19)170 (2)
O4W—H42···O3Wiii0.83 (2)1.93 (2)2.760 (2)179 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula2C4H12N+·S2O32·4H2O
Mr332.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)8.1869 (1), 15.4342 (2), 14.0867 (2)
β (°) 94.074 (1)
V3)1775.47 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
11725, 4080, 3531
Rint0.019
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.02
No. of reflections4080
No. of parameters204
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O10.829 (12)1.881 (11)2.706 (3)174 (3)
O1W—H12···O3W0.836 (18)1.923 (18)2.758 (2)178.4 (14)
O2W—H21···O1W0.837 (19)1.86 (2)2.689 (2)172 (2)
O2W—H22···O4W0.84 (2)1.90 (3)2.736 (2)173 (3)
O3W—H31···O2i0.833 (19)1.931 (18)2.759 (2)172 (2)
O3W—H32···O2Wii0.84 (2)1.882 (19)2.713 (2)173 (2)
O4W—H41···S2iii0.831 (17)2.506 (18)3.3280 (19)170 (2)
O4W—H42···O3Wiii0.83 (2)1.93 (2)2.760 (2)179 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+2, z+1; (iii) x1, y, z.
 

Acknowledgements

We thank Northwest Normal University, China, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLeyten, W., Rettig, S. J. & Trotter, J. (1988). Acta Cryst. C44, 1749–1751.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds