organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Butyl­anilinium perchlorate

aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: cxwchem@yahoo.com.cn

(Received 9 June 2011; accepted 13 June 2011; online 18 June 2011)

In the crystal structure of the title salt, C10H16N+·ClO4, the 4-butyl­anilinium cation is mirror symmetric, the butyl C atoms and anilinium N atom and 1,4-position C atoms of the benzene ring being located on the mirror plane; the perchlorate anion is also mirror symmetric, with two O atoms and one Cl atom lying on the mirror plane. Trifurcated N—H⋯O hydrogen bonding is observed between the cation and anion in the crystal structure.

Related literature

For related amine derivatives and their applications, see: Fender et al. (2002[Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286-293.]); Kryatova et al. (2004[Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579-4588.]); Fu et al. (2010[Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N+·ClO4

  • Mr = 249.69

  • Monoclinic, P 21 /m

  • a = 4.8825 (10) Å

  • b = 7.9565 (16) Å

  • c = 15.452 (3) Å

  • β = 97.35 (3)°

  • V = 595.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 6108 measured reflections

  • 1466 independent reflections

  • 1102 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.255

  • S = 1.15

  • 1466 reflections

  • 97 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.21 2.873 (8) 134
N1—H1A⋯O2 0.86 2.33 2.951 (7) 129
N1—H1A⋯O2ii 0.86 2.33 2.951 (7) 129
N1—H1B⋯O2iii 0.86 2.17 2.960 (4) 153
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z]; (iii) -x+2, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The amino derivatives have found wide range of applications in material science, such as molecular recognition, fluorescence and dielectric behavior (Fender et al., 2002; Kryatova et al., 2004). And there has been an increased interest in the preparation of salts of amide (Aminabhavi et al., 1986; Fu et al. 2010). We report here the crystal structure of the title compound, 4-butylanilinium monoperchlorate.

In the title compound (Fig. 1), the asymmetric unit is composed of half ClO4- anion and half C10H16N+ organic cation. The N atom of the amine group is protonated. The butyl group is approximately perpendicular to the benzene plane, the torsion angle C3–C4–C5–C6 = 88.5 (6)°.

In the crystal structure, the trifurcated N—H···O hydrogen bonding is observed between the cation and anion (Table 1).

Related literature top

For related amine derivatives and their applications, see: Fender et al. (2002); Kryatova et al. (2004); Fu et al. (2010); Aminabhavi et al. (1986).

Experimental top

4-Butylanilinium perchlorate was obtained commercially from Alfa Aesar. Colourless block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/water (2:1 v/v) solution.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic), C–H = 0.96 Å (methyl) and C–H = 0.97 Å (methylene), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. All NH3+ hydrogen atoms were calculated geometrically and were refined using a riding model with N—H = 0.86 Å and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-Butylanilinium perchlorate top
Crystal data top
C10H16N+·ClO4F(000) = 264
Mr = 249.69Dx = 1.393 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1466 reflections
a = 4.8825 (10) Åθ = 3.7–27.5°
b = 7.9565 (16) ŵ = 0.32 mm1
c = 15.452 (3) ÅT = 298 K
β = 97.35 (3)°Block, colorless
V = 595.4 (2) Å30.10 × 0.03 × 0.03 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
1466 independent reflections
Radiation source: fine-focus sealed tube1102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.7°
CCD profile fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.910, Tmax = 1.000l = 1920
6108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.255H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.1129P)2 + 1.2735P]
where P = (Fo2 + 2Fc2)/3
1466 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.80 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
C10H16N+·ClO4V = 595.4 (2) Å3
Mr = 249.69Z = 2
Monoclinic, P21/mMo Kα radiation
a = 4.8825 (10) ŵ = 0.32 mm1
b = 7.9565 (16) ÅT = 298 K
c = 15.452 (3) Å0.10 × 0.03 × 0.03 mm
β = 97.35 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1466 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1102 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.064
6108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0842 restraints
wR(F2) = 0.255H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.80 e Å3
1466 reflectionsΔρmin = 0.39 e Å3
97 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6840 (3)0.25000.58920 (10)0.0330 (5)
O30.7917 (12)0.25000.6775 (3)0.0577 (14)
O20.7792 (8)0.1039 (4)0.5470 (2)0.0512 (10)
O10.3918 (11)0.25000.5797 (4)0.0584 (15)
C10.8370 (13)0.25000.3416 (4)0.0338 (13)
N11.0745 (12)0.25000.4098 (4)0.0408 (13)
H1A1.07150.25000.46530.061*
H1B1.15660.15430.41060.061*
C40.3891 (14)0.25000.2140 (4)0.0397 (15)
C50.1577 (18)0.25000.1403 (5)0.055 (2)
H50.053 (13)0.348 (8)0.144 (4)0.066*
C20.7268 (10)0.0998 (6)0.3113 (3)0.0429 (11)
H20.80120.00130.33360.052*
C60.2653 (17)0.25000.0523 (5)0.0499 (18)
H60.349 (12)0.155 (7)0.048 (4)0.060*
C70.043 (2)0.25000.0246 (6)0.067 (3)
H70.091 (14)0.344 (8)0.021 (4)0.081*
C30.5053 (11)0.1013 (6)0.2476 (3)0.0461 (12)
H30.43050.00030.22630.055*
C80.151 (3)0.25000.1102 (6)0.091 (3)
H8A0.00070.25000.15620.136*
H8B0.26200.34850.11490.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0304 (8)0.0272 (7)0.0404 (8)0.0000.0010 (5)0.000
O30.071 (4)0.054 (3)0.045 (3)0.0000.002 (2)0.000
O20.057 (2)0.0303 (18)0.068 (2)0.0049 (15)0.0126 (17)0.0083 (16)
O10.035 (3)0.049 (3)0.090 (4)0.0000.006 (3)0.000
C10.034 (3)0.035 (3)0.033 (3)0.0000.008 (2)0.000
N10.044 (3)0.036 (3)0.042 (3)0.0000.002 (2)0.000
C40.036 (3)0.051 (4)0.032 (3)0.0000.006 (3)0.000
C50.048 (5)0.069 (5)0.046 (4)0.0000.001 (3)0.000
C20.048 (3)0.031 (2)0.049 (3)0.0007 (19)0.003 (2)0.0057 (19)
C60.050 (5)0.053 (5)0.046 (4)0.0000.004 (3)0.000
C70.089 (7)0.060 (5)0.047 (5)0.0000.014 (4)0.000
C30.055 (3)0.036 (3)0.047 (3)0.009 (2)0.004 (2)0.004 (2)
C80.099 (9)0.120 (10)0.050 (5)0.0000.003 (5)0.000
Geometric parameters (Å, º) top
Cl1—O31.398 (5)C5—C61.520 (11)
Cl1—O11.415 (5)C5—H50.94 (6)
Cl1—O21.439 (3)C2—C31.366 (7)
Cl1—O2i1.439 (3)C2—H20.9300
C1—C21.369 (5)C6—C71.503 (12)
C1—C2i1.369 (5)C6—H60.86 (6)
C1—N11.464 (8)C7—C81.486 (15)
N1—H1A0.8600C7—H71.00 (7)
N1—H1B0.8601C3—H30.9300
C4—C3i1.384 (6)C8—H8A0.9601
C4—C31.384 (6)C8—H8B0.9600
C4—C51.498 (10)
O3—Cl1—O1110.5 (4)C6—C5—H5108 (4)
O3—Cl1—O2109.8 (2)C3—C2—C1118.6 (4)
O1—Cl1—O2109.4 (2)C3—C2—H2120.7
O3—Cl1—O2i109.8 (2)C1—C2—H2120.7
O1—Cl1—O2i109.4 (2)C7—C6—C5114.2 (8)
O2—Cl1—O2i107.8 (3)C7—C6—H6104 (4)
C2—C1—C2i121.7 (6)C5—C6—H6107 (4)
C2—C1—N1119.2 (3)C8—C7—C6113.6 (10)
C2i—C1—N1119.2 (3)C8—C7—H7111 (4)
C1—N1—H1A127.2C6—C7—H7112 (4)
C1—N1—H1B109.6C2—C3—C4121.8 (5)
H1A—N1—H1B93.1C2—C3—H3119.1
C3i—C4—C3117.4 (6)C4—C3—H3119.1
C3i—C4—C5121.2 (3)C7—C8—H8A109.3
C3—C4—C5121.2 (3)C7—C8—H8B109.6
C4—C5—C6111.5 (7)H8A—C8—H8B109.5
C4—C5—H5108 (4)
C3i—C4—C5—C688.1 (6)C5—C6—C7—C8180.0
C3—C4—C5—C688.1 (6)C1—C2—C3—C40.6 (9)
C2i—C1—C2—C31.6 (10)C3i—C4—C3—C20.3 (10)
N1—C1—C2—C3180.0 (5)C5—C4—C3—C2176.1 (6)
C4—C5—C6—C7180.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.862.212.873 (8)134
N1—H1A···O20.862.332.951 (7)129
N1—H1A···O2i0.862.332.951 (7)129
N1—H1B···O2iii0.862.172.960 (4)153
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H16N+·ClO4
Mr249.69
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)4.8825 (10), 7.9565 (16), 15.452 (3)
β (°) 97.35 (3)
V3)595.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6108, 1466, 1102
Rint0.064
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.255, 1.15
No. of reflections1466
No. of parameters97
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.39

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.212.873 (8)134
N1—H1A···O20.862.332.951 (7)129
N1—H1A···O2ii0.862.332.951 (7)129
N1—H1B···O2iii0.862.172.960 (4)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z; (iii) x+2, y, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationFender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.  Web of Science CSD CrossRef CAS Google Scholar
First citationKryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds