organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-2-oxo-1-phenyl­propan-1-aminium chloride

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: wsj@njcc.edu.cn

(Received 19 March 2011; accepted 20 June 2011; online 30 June 2011)

In the structure of the title compound, C10H14NO+·Cl, both H atoms bound to nitro­gen are involved in N—H⋯Cl hydrogen-bonding inter­actions. These inter­actions join the cations and anions into dimeric units (two cations and two anions) with R42(8) motifs lying about inversion centers.

Related literature

For the screening of mol­ecular salts with physicochemical properties, see: Tong & Whitesell et al. (1998[Tong, W. & Whitesell, G. (1998). Pharm. Dev. Technol. 3, 215-223.]); Shanker (1994[Shanker, R. (1994). Pharm. Res. 11, S-236.]). Over 40% of commercially available salts are hydro­chlorides (Gould et al., 1986[Gould, P. L. (1986). Int. J. Pharm. 33, 201-217.]), and this trend is reflected in the available set of salt structures included in the Cambridge Structural Database (Allen et al., 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a closely related structure, see: Au & Tafeenko (1986[Au, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65-74.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14NO+·Cl

  • Mr = 199.67

  • Monoclinic, P 21 /c

  • a = 12.631 (3) Å

  • b = 8.2564 (17) Å

  • c = 11.423 (2) Å

  • β = 114.63 (3)°

  • V = 1082.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury 2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.825, Tmax = 1.000

  • 10899 measured reflections

  • 2486 independent reflections

  • 1858 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.172

  • S = 1.12

  • 2486 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.90 2.26 3.1345 (19) 163
N1—H1E⋯Cl1i 0.90 2.19 3.0747 (19) 167
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The importance of molecular salts as solid forms in pharmaceutical formulations is well known. For a given active ingredient, the isolation and selection of a salt with the appropriate physicochemical properties involves significant screening activity and has been discussed at some length in the literature (Tong & Whitesell et al., 1998; Shanker et al., 1994). It is apparent that over 40% of marketed salts are hydrochlorides (Gould et al., 1986), and this trend is reflected in the available set of salt structures provided by the Cambridge Structural Database (Allen et al., 2002). Here we report the synthesis and crystal structure of the title compound, N-methyl-2-oxo-1-phenylpropan-1-aminium chloride (Fig. 1).

The bond distances and angles in the structure of the title compound agree very well with the corresponding distances and angles reported for a closely related compound (Au & Tafeenko et al., 1986). It is noteworthy that both H-atoms bonded to one nitrogen (N1) are involved in hydrogen bonding interactions of the type N—H···Cl hydrogen bonds, forming dimers lying about inversion centers according to R22(4) motifs in graph set notation (Tab.1, Fig.2). Dipole-dipole and van der Waals interactions are effective in the molecular packing.

Related literature top

For the screening of molecular salts with physicochemical properties, see: Tong & Whitesell et al. (1998); Shanker (1994). Over 40% of marketed salts are hydrochlorides (Gould et al., 1986), and this trend is reflected in the available set of salt structures included in the Cambridge Structural Database (Allen et al., 2002). For a closely related structure, see: Au & Tafeenko (1986).

Experimental top

To a stirred solution of 1-(methylamino)-1-phenylpropan-2-one (2.445 g, 0.015 mol) in 30 mL of dry THF, hydrochloric acid (1.52 g, 0.015 mol) was added at the room temperature. The precipitate was filtered and washed with a small amount of ethanol 95%. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in water at room temperature.

Refinement top

The H-atoms bonded to the C-atom were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). The H-atoms bonded to the N-atom were located from a difference map and refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis showing the hydrogen bonds N—H···Cl (dotted lines).
N-Methyl-2-oxo-1-phenylpropan-1-aminium chloride top
Crystal data top
C10H14NO+·ClF(000) = 424
Mr = 199.67Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2486 reflections
a = 12.631 (3) Åθ = 2.6–27.5°
b = 8.2564 (17) ŵ = 0.32 mm1
c = 11.423 (2) ÅT = 293 K
β = 114.63 (3)°Prism, colorless
V = 1082.9 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury 2
diffractometer
2486 independent reflections
Radiation source: fine-focus sealed tube1858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1010
Tmin = 0.825, Tmax = 1.000l = 1414
10899 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1P)2 + 0.0P]
where P = (Fo2 + 2Fc2)/3
2486 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H14NO+·ClV = 1082.9 (4) Å3
Mr = 199.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.631 (3) ŵ = 0.32 mm1
b = 8.2564 (17) ÅT = 293 K
c = 11.423 (2) Å0.20 × 0.20 × 0.20 mm
β = 114.63 (3)°
Data collection top
Rigaku Mercury 2
diffractometer
2486 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
1858 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.053
10899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.12Δρmax = 0.27 e Å3
2486 reflectionsΔρmin = 0.20 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84648 (5)0.60715 (7)1.05463 (5)0.0477 (2)
N10.88712 (14)0.4261 (2)0.83566 (16)0.0372 (4)
H1A0.86330.46280.89490.045*
H1E0.96380.40490.87640.045*
C40.6325 (2)0.3894 (3)0.7610 (2)0.0557 (7)
H4A0.67210.44380.83840.067*
C50.82470 (17)0.2721 (2)0.78105 (19)0.0371 (5)
H5A0.85440.22860.72070.045*
C70.85316 (19)0.1511 (3)0.8920 (2)0.0429 (5)
C80.69366 (18)0.2949 (3)0.7093 (2)0.0396 (5)
C90.5129 (2)0.4023 (4)0.6973 (3)0.0725 (9)
H9A0.47240.46630.73170.087*
C100.8142 (3)0.0187 (3)0.8562 (3)0.0646 (8)
H10A0.83630.08290.93290.097*
H10B0.85010.06180.80360.097*
H10C0.73110.02120.80910.097*
C110.6337 (2)0.2185 (3)0.5944 (2)0.0606 (7)
H11A0.67370.15780.55740.073*
C120.5143 (3)0.2308 (4)0.5332 (3)0.0782 (10)
H12A0.47460.17590.45610.094*
C130.4533 (2)0.3214 (4)0.5833 (3)0.0747 (9)
H13A0.37270.32860.54120.090*
C10.8697 (2)0.5566 (3)0.7395 (2)0.0535 (6)
H1B0.91260.65110.78240.080*
H1C0.78840.58260.69700.080*
H1D0.89700.52020.67710.080*
O20.90399 (18)0.1954 (2)1.00174 (16)0.0685 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0439 (4)0.0545 (4)0.0443 (4)0.0016 (2)0.0181 (3)0.0090 (2)
N10.0367 (10)0.0430 (10)0.0320 (9)0.0007 (7)0.0144 (8)0.0012 (7)
C40.0402 (13)0.081 (2)0.0412 (14)0.0042 (12)0.0126 (11)0.0107 (12)
C50.0380 (11)0.0403 (11)0.0351 (11)0.0030 (9)0.0174 (9)0.0010 (9)
C70.0411 (12)0.0458 (12)0.0444 (13)0.0062 (10)0.0206 (10)0.0087 (10)
C80.0359 (11)0.0461 (13)0.0330 (11)0.0001 (9)0.0106 (9)0.0020 (9)
C90.0463 (15)0.104 (3)0.0649 (18)0.0143 (15)0.0204 (14)0.0088 (16)
C100.0814 (19)0.0464 (15)0.0628 (18)0.0013 (13)0.0269 (15)0.0096 (12)
C110.0575 (16)0.0673 (17)0.0466 (14)0.0056 (13)0.0114 (12)0.0156 (12)
C120.0593 (18)0.091 (2)0.0570 (17)0.0015 (16)0.0033 (14)0.0222 (16)
C130.0389 (15)0.103 (2)0.0652 (19)0.0037 (15)0.0045 (13)0.0044 (18)
C10.0651 (16)0.0445 (13)0.0481 (14)0.0040 (12)0.0208 (12)0.0077 (10)
O20.0939 (15)0.0638 (13)0.0361 (10)0.0005 (10)0.0155 (9)0.0099 (8)
Geometric parameters (Å, º) top
N1—C11.488 (3)C9—C131.375 (4)
N1—C51.489 (3)C9—H9A0.9300
N1—H1A0.9000C10—H10A0.9600
N1—H1E0.9000C10—H10B0.9600
C4—C91.380 (3)C10—H10C0.9600
C4—C81.391 (3)C11—C121.376 (4)
C4—H4A0.9300C11—H11A0.9300
C5—C81.522 (3)C12—C131.359 (4)
C5—C71.534 (3)C12—H12A0.9300
C5—H5A0.9800C13—H13A0.9300
C7—O21.203 (3)C1—H1B0.9600
C7—C101.486 (4)C1—H1C0.9600
C8—C111.366 (3)C1—H1D0.9600
C1—N1—C5114.80 (17)C4—C9—H9A119.7
C1—N1—H1A108.6C7—C10—H10A109.5
C5—N1—H1A108.6C7—C10—H10B109.5
C1—N1—H1E108.6H10A—C10—H10B109.5
C5—N1—H1E108.6C7—C10—H10C109.5
H1A—N1—H1E107.5H10A—C10—H10C109.5
C9—C4—C8119.9 (2)H10B—C10—H10C109.5
C9—C4—H4A120.0C8—C11—C12120.4 (3)
C8—C4—H4A120.0C8—C11—H11A119.8
N1—C5—C8112.75 (17)C12—C11—H11A119.8
N1—C5—C7108.00 (17)C13—C12—C11121.3 (3)
C8—C5—C7110.70 (17)C13—C12—H12A119.3
N1—C5—H5A108.4C11—C12—H12A119.3
C8—C5—H5A108.4C12—C13—C9118.9 (3)
C7—C5—H5A108.4C12—C13—H13A120.6
O2—C7—C10123.0 (2)C9—C13—H13A120.6
O2—C7—C5120.2 (2)N1—C1—H1B109.5
C10—C7—C5116.8 (2)N1—C1—H1C109.5
C11—C8—C4118.9 (2)H1B—C1—H1C109.5
C11—C8—C5120.2 (2)N1—C1—H1D109.5
C4—C8—C5120.9 (2)H1B—C1—H1D109.5
C13—C9—C4120.6 (3)H1C—C1—H1D109.5
C13—C9—H9A119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.902.263.1345 (19)163
N1—H1E···Cl1i0.902.193.0747 (19)167
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H14NO+·Cl
Mr199.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.631 (3), 8.2564 (17), 11.423 (2)
β (°) 114.63 (3)
V3)1082.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury 2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10899, 2486, 1858
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.172, 1.12
No. of reflections2486
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.902.263.1345 (19)163
N1—H1E···Cl1i0.902.193.0747 (19)167
Symmetry code: (i) x+2, y+1, z+2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAu, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65–74.  CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationGould, P. L. (1986). Int. J. Pharm. 33, 201–217.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShanker, R. (1994). Pharm. Res. 11, S–236.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, W. & Whitesell, G. (1998). Pharm. Dev. Technol. 3, 215–223.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds