organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(1-methyl-1H-tetra­zol-5-yl)sulfan­yl]ethane

aSchool of Environmental Science & Engineering, Chang'an University, Xi'an 710054, Shaanxi, People's Republic of China, and bCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: northwindy@126.com

(Received 21 May 2011; accepted 7 June 2011; online 18 June 2011)

The title compound, C6H10N8S2, was prepared by the nucleophilic substitution reaction of 5-mercapto-1-methyl­tetra­zole and dichloro­ethane. In the crystal, the mol­ecule possesses an approximate non-crystallographic twofold symmetry axis. The crystal packing is stabilized by weak inter­molecular C—H⋯N and ππ inter­actions [centroid–centroid distances = 3.448 (6), 3.5085 (5) and 3.4591 (2) Å]. The two five-membered rings form a dihedral angle of 1.9 (2)°.

Related literature

For the synthesis and structures of closely related compounds, see: She et al. (2006[She, J.-B., Zhang, G.-F., Dou, Y.-L., Fan, X.-Z. & Li, J.-Z. (2006). Acta Cryst. E62, o402-o404.]); Wei et al. (2011[Wei, W., Xia, Z., Chen, S. & Gao, S. (2011). Acta Cryst. E67, o999.]). For the pharmacological activity of tetra­zole-containing compounds, see: Gilchrist (1992[Gilchrist, T. L. (1992). Heterocyclic Chemistry, 2nd ed., pp. 505-511. New York: John Wiley & Sons.]); Armour et al. (1996[Armour, D. R., Chung, K. M. L., Congreve, M., Evans, B., Guntrip, S., Hubbard, T., Kay, C., Middlemiss, D., Mordaunt, J. E., Pegg, N. A., Vinader, M. V., Ward, P. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1015-1020.]); Upadhayaya et al. (2004[Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 579-592.]). For applications of tetra­zole derivatives in coordination chemistry and as energetic materials, see: Zhao et al. (2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]); Wang et al. (2009[Wang, W. T., Chen, S. P. & Gao, S. L. (2009). Eur. J. Inorg. Chem. 23, 3475-3480.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N8S2

  • Mr = 258.34

  • Triclinic, [P \overline 1]

  • a = 7.5905 (17) Å

  • b = 7.9958 (17) Å

  • c = 10.398 (2) Å

  • α = 95.206 (3)°

  • β = 92.922 (3)°

  • γ = 115.109 (2)°

  • V = 566.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.868, Tmax = 0.982

  • 2874 measured reflections

  • 1972 independent reflections

  • 1454 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.39

  • 1972 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N4i 0.96 2.49 3.413 (5) 161
C6—H6B⋯N5ii 0.96 2.43 3.355 (5) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As is well known, tetrazole-containing compounds are used in pharmaceutics, where they play a stimulative or sedative role for the central nervous system (Gilchrist, 1992; Armour et al., 1996). Due to the various coordination modes of tetrazole group and high content of nitrogen, tetrazole derivatives have been widely applied in coordination chemistry (Zhao et al., 2008) and the chemistry of energetic materials (Wang et al., 2009). The title compound is a derivative of tetrazole. Nevertheless, reports on its use in pharmaceutical, coordination chemistry or energetic materials are very scarce. Here we report its crystal structure as a prerequisite of further investigation of possibilities for its use in the above fields.

In the crystal structure of the title, the molecule possesses approximate non-crystallographic twofold symmetry axis. Two 1-methyltetrazole groups are linked by —S—C2H4—S— bridge, and the two five-membered rings form a dihedral angle of 1.92° (Fig. 1). The values for the S1—C4 and S2—C3 bonds in the bridge [1.812 (4) Å and 1.814 (4) Å] are longer than the distances of S1—C5 and S2—C2 bonds [1.738 (3) Å and 1.725 (4) Å]. This difference can be attributed by electron attracting effect of 1-methyltetrazole groups. As shown in Fig. 2, tetrazole rings form stacks [intercentroid distances Cg1—Cg1(i) = 3.448 (6) Å, Cg2—Cg2(iii) = 3.5085 (5) Å, Cg1(ii)-Cg2 = 3.4591 (2) Å, (i) 1 - x, 1 - y, 1 - z; (ii) x, 1 + y, z; (iii) 1 - x, 2 - y, x-z].

Related literature top

For the synthesis and structures of closely related compounds, see: She et al. (2006); Wei et al. (2011). For the pharmacological activity of tetrazole-containing compounds, see: Gilchrist (1992); Armour et al. (1996); Upadhayaya et al. (2004). For applications of tetrazole derivatives in coordination chemistry and as energetic materials, see: Zhao et al. (2008); Wang et al. (2009).

Experimental top

Sodium hydroxide (1.7 g, 0.043 mol) was added to 5-mercapto-1-methyltetrazole (5 g, 0.043 mol) in dry dimethylsulfoxide (35 ml). The reaction mixture was stirred at 363 K for 1 h. Dichloroethane (3.1 ml, 0.0215 mol) was then added to the solution dropwise with the formation of a grey suspension. The suspension was stirred for 4 h, cooled to room temperature and filtered. The solvent was removed completely under reduced pressure, and the obtained residue was recrystallized from ethanol to give a colorless flaky crystalline product (2.94 g; m.p. 411 - 414 K).

Refinement top

All H atoms were positioned geometrically (C—H = 0.96 Å for CH3 and 0.97 Å for CH2 groups, respectively) and constrained to ride on their parent atoms with Uiso(H) values set to 1.5 times Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the C–H···N and π-π interactions. Symmetry operators: i 1 - x, 1 - y, 1 - z; ii x, 1 + y, z; iii 1 - x, 2 - y, x-z.
Bis[(1-methyl-1H-tetrazol-5-yl)sulfanyl]ethane top
Crystal data top
C6H10N8S2Z = 2
Mr = 258.34F(000) = 268
Triclinic, P1Dx = 1.515 Mg m3
Dm = 1.515 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5905 (17) ÅCell parameters from 816 reflections
b = 7.9958 (17) Åθ = 3.0–24.3°
c = 10.398 (2) ŵ = 0.46 mm1
α = 95.206 (3)°T = 296 K
β = 92.922 (3)°Flake-like, colourless
γ = 115.109 (2)°0.31 × 0.27 × 0.04 mm
V = 566.3 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1972 independent reflections
Radiation source: fine-focus sealed tube1454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 89
Tmin = 0.868, Tmax = 0.982k = 99
2874 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.39 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
1972 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H10N8S2γ = 115.109 (2)°
Mr = 258.34V = 566.3 (2) Å3
Triclinic, P1Z = 2
a = 7.5905 (17) ÅMo Kα radiation
b = 7.9958 (17) ŵ = 0.46 mm1
c = 10.398 (2) ÅT = 296 K
α = 95.206 (3)°0.31 × 0.27 × 0.04 mm
β = 92.922 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1454 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.982Rint = 0.017
2874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.39Δρmax = 0.26 e Å3
1972 reflectionsΔρmin = 0.26 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09578 (12)0.84390 (12)0.77838 (9)0.0521 (3)
S20.09347 (12)0.29485 (12)0.68329 (10)0.0556 (3)
C30.1006 (5)0.5022 (4)0.7748 (3)0.0475 (8)
H3A0.01860.46950.81710.071*
H3B0.20960.55070.84180.071*
C40.1213 (5)0.6503 (4)0.6906 (3)0.0462 (8)
H4A0.02240.59750.61690.069*
H4B0.24850.69520.65760.069*
N80.4054 (4)0.2801 (4)0.5763 (3)0.0453 (7)
N10.3945 (4)1.1385 (4)0.9194 (3)0.0508 (7)
N70.6021 (4)0.3722 (4)0.5857 (3)0.0553 (8)
C20.3378 (5)0.3691 (4)0.6618 (3)0.0416 (8)
N40.4956 (4)0.9965 (4)0.7756 (3)0.0593 (8)
N50.4887 (4)0.5150 (4)0.7245 (3)0.0560 (8)
N30.6501 (4)1.1452 (5)0.8422 (3)0.0673 (9)
C50.3392 (5)0.9955 (5)0.8249 (3)0.0463 (8)
N60.6500 (4)0.5133 (4)0.6750 (3)0.0611 (8)
C10.2987 (5)0.1146 (5)0.4834 (4)0.0571 (10)
H1A0.37720.11410.41400.086*
H1B0.17910.11510.44890.086*
H1C0.26930.00550.52600.086*
N20.5909 (5)1.2321 (4)0.9288 (3)0.0664 (9)
C60.2779 (6)1.1957 (6)1.0046 (4)0.0694 (12)
H6A0.19581.23440.95400.104*
H6B0.36311.29731.06750.104*
H6C0.19811.09291.04820.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (5)0.0435 (5)0.0671 (6)0.0217 (4)0.0033 (4)0.0113 (4)
S20.0421 (5)0.0364 (5)0.0800 (7)0.0130 (4)0.0051 (4)0.0121 (5)
C30.046 (2)0.0407 (19)0.054 (2)0.0201 (16)0.0055 (15)0.0083 (16)
C40.046 (2)0.0393 (19)0.0510 (19)0.0189 (16)0.0026 (15)0.0081 (16)
N80.0426 (16)0.0439 (16)0.0483 (16)0.0188 (13)0.0039 (13)0.0006 (13)
N10.0494 (18)0.0460 (17)0.0492 (16)0.0150 (15)0.0033 (13)0.0037 (14)
N70.0469 (18)0.059 (2)0.0606 (18)0.0229 (16)0.0091 (14)0.0061 (16)
C20.0393 (18)0.0323 (17)0.0483 (18)0.0128 (15)0.0012 (15)0.0021 (15)
N40.0489 (19)0.057 (2)0.067 (2)0.0194 (16)0.0076 (15)0.0027 (16)
N50.0457 (18)0.0510 (18)0.0647 (19)0.0192 (15)0.0068 (15)0.0098 (15)
N30.0475 (19)0.063 (2)0.075 (2)0.0088 (17)0.0081 (17)0.0056 (18)
C50.051 (2)0.0419 (19)0.0460 (19)0.0220 (17)0.0010 (16)0.0004 (16)
N60.0456 (18)0.055 (2)0.074 (2)0.0171 (15)0.0039 (16)0.0024 (17)
C10.064 (2)0.0388 (19)0.059 (2)0.0167 (18)0.0033 (18)0.0145 (17)
N20.057 (2)0.057 (2)0.069 (2)0.0104 (17)0.0027 (17)0.0026 (17)
C60.070 (3)0.074 (3)0.060 (2)0.034 (2)0.005 (2)0.023 (2)
Geometric parameters (Å, º) top
S1—C51.738 (4)N1—C61.457 (4)
S1—C41.812 (3)N7—N61.302 (4)
S2—C21.724 (3)C2—N51.323 (4)
S2—C31.814 (3)N4—C51.314 (4)
C3—C41.496 (5)N4—N31.362 (4)
C3—H3A0.9700N5—N61.357 (4)
C3—H3B0.9700N3—N21.299 (4)
C4—H4A0.9700C1—H1A0.9600
C4—H4B0.9700C1—H1B0.9600
N8—C21.342 (4)C1—H1C0.9600
N8—N71.349 (4)C6—H6A0.9600
N8—C11.456 (4)C6—H6B0.9600
N1—C51.340 (4)C6—H6C0.9600
N1—N21.348 (4)
C5—S1—C4100.94 (15)N5—C2—S2128.0 (3)
C2—S2—C3100.20 (15)N8—C2—S2123.6 (2)
C4—C3—S2112.2 (2)C5—N4—N3105.8 (3)
C4—C3—H3A109.2C2—N5—N6106.0 (3)
S2—C3—H3A109.2N2—N3—N4110.7 (3)
C4—C3—H3B109.2N4—C5—N1108.9 (3)
S2—C3—H3B109.2N4—C5—S1128.2 (3)
H3A—C3—H3B107.9N1—C5—S1122.9 (3)
C3—C4—S1111.8 (2)N7—N6—N5110.8 (3)
C3—C4—H4A109.3N8—C1—H1A109.5
S1—C4—H4A109.3N8—C1—H1B109.5
C3—C4—H4B109.3H1A—C1—H1B109.5
S1—C4—H4B109.3N8—C1—H1C109.5
H4A—C4—H4B107.9H1A—C1—H1C109.5
C2—N8—N7108.6 (3)H1B—C1—H1C109.5
C2—N8—C1129.7 (3)N3—N2—N1106.3 (3)
N7—N8—C1121.7 (3)N1—C6—H6A109.5
C5—N1—N2108.3 (3)N1—C6—H6B109.5
C5—N1—C6130.2 (3)H6A—C6—H6B109.5
N2—N1—C6121.5 (3)N1—C6—H6C109.5
N6—N7—N8106.2 (2)H6A—C6—H6C109.5
N5—C2—N8108.4 (3)H6B—C6—H6C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N4i0.962.493.413 (5)161
C6—H6B···N5ii0.962.433.355 (5)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC6H10N8S2
Mr258.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5905 (17), 7.9958 (17), 10.398 (2)
α, β, γ (°)95.206 (3), 92.922 (3), 115.109 (2)
V3)566.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.31 × 0.27 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.868, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2874, 1972, 1454
Rint0.017
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.39
No. of reflections1972
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N4i0.962.493.413 (5)161
C6—H6B···N5ii0.962.433.355 (5)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
 

Acknowledgements

We gratefully acknowledge the National Science Foundation of China (No. 20873100) and the Natural Science Foundation of Shaanxi Province (No. FF10091).

References

First citationArmour, D. R., Chung, K. M. L., Congreve, M., Evans, B., Guntrip, S., Hubbard, T., Kay, C., Middlemiss, D., Mordaunt, J. E., Pegg, N. A., Vinader, M. V., Ward, P. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1015–1020.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGilchrist, T. L. (1992). Heterocyclic Chemistry, 2nd ed., pp. 505–511. New York: John Wiley & Sons.  Google Scholar
First citationShe, J.-B., Zhang, G.-F., Dou, Y.-L., Fan, X.-Z. & Li, J.-Z. (2006). Acta Cryst. E62, o402–o404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 579–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W. T., Chen, S. P. & Gao, S. L. (2009). Eur. J. Inorg. Chem. 23, 3475–3480.  CrossRef Google Scholar
First citationWei, W., Xia, Z., Chen, S. & Gao, S. (2011). Acta Cryst. E67, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds