organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5,5-Dioxido-10H-pheno­thia­zin-10-yl)ethanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 25 May 2011; accepted 6 June 2011; online 18 June 2011)

In the title compound, C14H11NO3S, the six-membered thia­zine ring fused to two benzene rings adopts a distorted boat conformation. The dihedral angle between the mean planes of the two benzene rings is 45.8 (1)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For synthetic dyes and electroluminescent materials containing phenothia­zine, see: Miller et al. (1999[Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292-4293.]). For anti­psychotic drugs, see: Wermuth et al. (2003[Wermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Academic Press.]). For applications of phenothia­zine derivatives in medicine, see: Wang et al. (2008[Wang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381-382.]). For their anti­tumor activity, see: Lam et al. (2001[Lam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379-47386.]). For related structures, see: Harrison et al. (2007[Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.]); Jasinski et al. (2011[Jasinski, J. P., Pek, A. E., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o430-o431.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11NO3S

  • Mr = 273.30

  • Monoclinic, P 21 /c

  • a = 12.5715 (6) Å

  • b = 8.7648 (4) Å

  • c = 11.5828 (5) Å

  • β = 92.142 (4)°

  • V = 1275.38 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.35 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.916, Tmax = 0.963

  • 5342 measured reflections

  • 2597 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.02

  • 2597 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.95 2.50 3.246 (2) 135
C8—H8A⋯O1ii 0.95 2.54 3.376 (2) 147
C9—H9A⋯O3ii 0.95 2.56 3.322 (2) 137
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenothiazine is a well known heterocycle. The phenothiazine structure occurs in many synthetic dyes, electroluminescent materials (Miller et al., 1999) and drugs, especially various antipsychotic drugs, e.g. chlorpromazine and antihistaminic drugs, e.g. promethazine (Wermuth, 2003). Recently, researchers have found some new applications for phenothiazine derivatives in medicine related to antitubercular (Wang et al., 2008) and antitumor activities (Lam et al., 2001). The title compound has been used in the synthesis of oxomemazine, an antihistamine and anticholinergic drug of the phenothiazine chemical class used for the treatment of coughs. The crystal structures of dioxopromethazinium picrate (Harrison et al., 2007) and 1-(10H-phenothiazin-2-yl)ethanone (Jasinski et al., 2011) have been reported. In view of the importance of phenothiazines, this paper reports the crystal structure of the title compound, C14H11NO3S.

In the title compound the six-membered thiazine ring fused to two benzene rings adopts a distorted boat conformation. (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.6257 (12) Å, 95.85 (13)° and 180.29 (15)°, respectively (Fig. 1). For an ideal boat θ and ϕ have values of 90.0° and 180°. The dihedral angle between the mean planes of the two benzene rings is 45.8 (1)°. The ethanone group extends away from corner of the boat crease with a -169.76 (14)° (C6/N1/C13/C14) torsion angle. The SO2 group extends away from the opposite corner of the boat crease with a 105.8 (14)° (C2/C1/S1/O1) torsion angle. Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is stabiized by weak C—H···O (Table 1, Fig. 2) intermolecular interactions.

Related literature top

For synthetic dyes and electroluminescent materials containing phenothiazine, see: Miller et al. (1999). For antipsychotic drugs, see: Wermuth et al. (2003). For applications of phenothiazine derivatives in medicine, see: Wang et al. (2008). For their antitumor activity, see: Lam et al. (2001). For related structures, see: Harrison et al. (2007); Jasinski et al. (2011). For standard bond lengths, see Allen et al. (1987).

For related literature, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained as a gift sample from RL Fine Chem, Bangalore, India. X-ray quality crystals were obtained by slow evaporation of solution of a 1:1 mixture of acetone:ethanol (m.p.: 495 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the c axis. Dashed lines indicate weak C—H···O intermolecular interactions.
1-(5,5-Dioxido-10H-phenothiazin-10-yl)ethanone top
Crystal data top
C14H11NO3SF(000) = 568
Mr = 273.30Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3700 reflections
a = 12.5715 (6) Åθ = 3.3–32.3°
b = 8.7648 (4) ŵ = 0.26 mm1
c = 11.5828 (5) ÅT = 173 K
β = 92.142 (4)°Block, colorless
V = 1275.38 (10) Å30.35 × 0.15 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2597 independent reflections
Radiation source: Enhance (Mo) X-ray Source2263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.1500 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.916, Tmax = 0.963l = 1413
5342 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.3216P]
where P = (Fo2 + 2Fc2)/3
2597 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H11NO3SV = 1275.38 (10) Å3
Mr = 273.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5715 (6) ŵ = 0.26 mm1
b = 8.7648 (4) ÅT = 173 K
c = 11.5828 (5) Å0.35 × 0.15 × 0.15 mm
β = 92.142 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2597 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2263 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.963Rint = 0.019
5342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
2597 reflectionsΔρmin = 0.40 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27860 (3)0.53431 (4)0.88913 (3)0.03458 (15)
O10.18673 (10)0.57759 (15)0.95043 (10)0.0481 (3)
O20.34587 (11)0.41839 (15)0.93886 (12)0.0552 (4)
O30.14803 (10)0.98466 (14)0.75069 (12)0.0492 (3)
N10.22033 (10)0.75636 (14)0.71011 (11)0.0301 (3)
C10.35385 (12)0.69784 (18)0.86054 (13)0.0330 (3)
C20.44865 (13)0.7260 (2)0.92270 (15)0.0441 (4)
H2B0.47450.65640.98010.053*
C30.50395 (14)0.8569 (2)0.89904 (17)0.0521 (5)
H3A0.56850.87930.94100.063*
C40.46595 (15)0.9559 (2)0.81450 (18)0.0523 (5)
H4A0.50451.04670.79990.063*
C50.37288 (14)0.9262 (2)0.75021 (15)0.0415 (4)
H5A0.34870.99410.69090.050*
C60.31596 (11)0.79526 (17)0.77439 (13)0.0307 (3)
C70.21083 (11)0.60193 (17)0.67173 (13)0.0303 (3)
C80.18008 (14)0.5650 (2)0.55873 (15)0.0413 (4)
H8A0.16510.64340.50380.050*
C90.17142 (16)0.4131 (2)0.52666 (16)0.0486 (5)
H9A0.14880.38810.44980.058*
C100.19506 (15)0.2974 (2)0.60424 (16)0.0470 (4)
H10A0.18660.19390.58140.056*
C110.23104 (13)0.33228 (18)0.71510 (15)0.0388 (4)
H11A0.25100.25360.76800.047*
C120.23754 (12)0.48386 (17)0.74801 (13)0.0301 (3)
C130.13555 (12)0.85896 (18)0.70914 (14)0.0355 (4)
C140.03011 (14)0.8073 (2)0.65925 (19)0.0527 (5)
H14A0.02540.87890.68160.079*
H14B0.01400.70540.68860.079*
H14C0.03260.80390.57480.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0430 (2)0.0320 (2)0.0286 (2)0.00086 (16)0.00171 (16)0.00387 (15)
O10.0580 (8)0.0502 (7)0.0371 (6)0.0057 (6)0.0143 (6)0.0048 (6)
O20.0673 (9)0.0431 (7)0.0538 (8)0.0057 (6)0.0169 (7)0.0151 (6)
O30.0556 (8)0.0313 (6)0.0604 (8)0.0070 (5)0.0022 (6)0.0060 (6)
N10.0334 (6)0.0253 (6)0.0311 (6)0.0007 (5)0.0050 (5)0.0007 (5)
C10.0332 (7)0.0339 (8)0.0319 (8)0.0001 (6)0.0005 (6)0.0033 (6)
C20.0391 (8)0.0518 (10)0.0406 (9)0.0034 (8)0.0086 (7)0.0069 (8)
C30.0363 (9)0.0687 (13)0.0509 (11)0.0097 (9)0.0056 (8)0.0147 (10)
C40.0475 (10)0.0565 (12)0.0532 (11)0.0216 (9)0.0068 (9)0.0083 (9)
C50.0473 (9)0.0389 (9)0.0385 (9)0.0100 (7)0.0036 (7)0.0000 (7)
C60.0322 (7)0.0300 (7)0.0299 (7)0.0021 (6)0.0011 (6)0.0044 (6)
C70.0310 (7)0.0268 (7)0.0330 (8)0.0024 (6)0.0006 (6)0.0009 (6)
C80.0534 (10)0.0380 (9)0.0321 (8)0.0081 (8)0.0040 (7)0.0014 (7)
C90.0667 (12)0.0443 (10)0.0346 (9)0.0121 (9)0.0004 (8)0.0097 (8)
C100.0620 (11)0.0310 (9)0.0485 (10)0.0071 (8)0.0104 (9)0.0115 (8)
C110.0467 (9)0.0269 (8)0.0432 (9)0.0013 (7)0.0080 (7)0.0001 (7)
C120.0326 (7)0.0280 (7)0.0297 (7)0.0006 (6)0.0031 (6)0.0008 (6)
C130.0401 (8)0.0311 (8)0.0351 (8)0.0023 (6)0.0018 (6)0.0060 (7)
C140.0363 (9)0.0519 (11)0.0697 (13)0.0035 (8)0.0019 (9)0.0010 (10)
Geometric parameters (Å, º) top
S1—O21.4292 (13)C5—C61.387 (2)
S1—O11.4294 (13)C5—H5A0.9500
S1—C121.7524 (16)C7—C81.389 (2)
S1—C11.7557 (16)C7—C121.394 (2)
O3—C131.210 (2)C8—C91.386 (2)
N1—C131.394 (2)C8—H8A0.9500
N1—C71.4283 (19)C9—C101.380 (3)
N1—C61.4314 (19)C9—H9A0.9500
C1—C61.384 (2)C10—C111.380 (2)
C1—C21.391 (2)C10—H10A0.9500
C2—C31.374 (3)C11—C121.384 (2)
C2—H2B0.9500C11—H11A0.9500
C3—C41.380 (3)C13—C141.496 (2)
C3—H3A0.9500C14—H14A0.9800
C4—C51.388 (3)C14—H14B0.9800
C4—H4A0.9500C14—H14C0.9800
O2—S1—O1117.73 (8)C8—C7—C12118.45 (14)
O2—S1—C12110.23 (8)C8—C7—N1122.08 (14)
O1—S1—C12108.36 (7)C12—C7—N1119.41 (13)
O2—S1—C1109.97 (8)C9—C8—C7119.52 (16)
O1—S1—C1109.16 (7)C9—C8—H8A120.2
C12—S1—C199.91 (7)C7—C8—H8A120.2
C13—N1—C7123.62 (12)C10—C9—C8121.26 (16)
C13—N1—C6118.52 (13)C10—C9—H9A119.4
C7—N1—C6116.52 (12)C8—C9—H9A119.4
C6—C1—C2121.92 (15)C11—C10—C9119.88 (16)
C6—C1—S1117.79 (11)C11—C10—H10A120.1
C2—C1—S1120.29 (13)C9—C10—H10A120.1
C3—C2—C1118.35 (17)C10—C11—C12118.89 (16)
C3—C2—H2B120.8C10—C11—H11A120.6
C1—C2—H2B120.8C12—C11—H11A120.6
C2—C3—C4120.13 (17)C11—C12—C7121.87 (15)
C2—C3—H3A119.9C11—C12—S1120.77 (12)
C4—C3—H3A119.9C7—C12—S1117.36 (11)
C3—C4—C5121.69 (17)O3—C13—N1119.75 (15)
C3—C4—H4A119.2O3—C13—C14121.93 (15)
C5—C4—H4A119.2N1—C13—C14118.29 (14)
C6—C5—C4118.54 (17)C13—C14—H14A109.5
C6—C5—H5A120.7C13—C14—H14B109.5
C4—C5—H5A120.7H14A—C14—H14B109.5
C1—C6—C5119.33 (14)C13—C14—H14C109.5
C1—C6—N1119.19 (13)H14A—C14—H14C109.5
C5—C6—N1121.45 (14)H14B—C14—H14C109.5
O2—S1—C1—C6154.78 (12)C13—N1—C7—C12121.42 (16)
O1—S1—C1—C674.65 (14)C6—N1—C7—C1245.13 (19)
C12—S1—C1—C638.88 (13)C12—C7—C8—C93.4 (2)
O2—S1—C1—C224.71 (16)N1—C7—C8—C9179.49 (16)
O1—S1—C1—C2105.85 (14)C7—C8—C9—C101.5 (3)
C12—S1—C1—C2140.62 (14)C8—C9—C10—C111.9 (3)
C6—C1—C2—C31.8 (3)C9—C10—C11—C123.3 (3)
S1—C1—C2—C3178.75 (14)C10—C11—C12—C71.3 (2)
C1—C2—C3—C40.8 (3)C10—C11—C12—S1177.93 (13)
C2—C3—C4—C51.0 (3)C8—C7—C12—C112.0 (2)
C3—C4—C5—C61.7 (3)N1—C7—C12—C11179.24 (14)
C2—C1—C6—C51.1 (2)C8—C7—C12—S1178.73 (12)
S1—C1—C6—C5179.43 (12)N1—C7—C12—S11.50 (18)
C2—C1—C6—N1177.23 (14)O2—S1—C12—C1126.68 (16)
S1—C1—C6—N12.26 (19)O1—S1—C12—C11103.47 (14)
C4—C5—C6—C10.6 (2)C1—S1—C12—C11142.39 (13)
C4—C5—C6—N1178.90 (15)O2—S1—C12—C7154.06 (12)
C13—N1—C6—C1122.59 (15)O1—S1—C12—C775.79 (13)
C7—N1—C6—C144.68 (19)C1—S1—C12—C738.35 (13)
C13—N1—C6—C559.1 (2)C7—N1—C13—O3174.72 (15)
C7—N1—C6—C5133.59 (15)C6—N1—C13—O38.4 (2)
C13—N1—C7—C861.5 (2)C7—N1—C13—C143.5 (2)
C6—N1—C7—C8131.99 (15)C6—N1—C13—C14169.76 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.952.503.246 (2)135
C8—H8A···O1ii0.952.543.376 (2)147
C9—H9A···O3ii0.952.563.322 (2)137
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11NO3S
Mr273.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.5715 (6), 8.7648 (4), 11.5828 (5)
β (°) 92.142 (4)
V3)1275.38 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.916, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
5342, 2597, 2263
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.02
No. of reflections2597
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.40

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.952.503.246 (2)135
C8—H8A···O1ii0.952.543.376 (2)147
C9—H9A···O3ii0.952.563.322 (2)137
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

MSS thanks the University of Mysore for the research facilities and R. L. Fine Chem, Bangalore, India, for the gift sample. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.  CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o430–o431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379–47386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381–382.  Google Scholar
First citationWermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds