organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,2-Di­hydro-2-oxopyridin-3-yl)-1,3-benzo­thia­zol-3-ium bromide monohydrate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 9 June 2011; accepted 13 June 2011; online 18 June 2011)

The title hydrated molecular salt, C12H9N2OS+·Br·H2O, the aza-substituted six-membered ring is present as its keto tautomer instead of its aromatic tautomer. The dihedral angle between the fused ring system and the pyridinone ring in the cation is 6.91 (6)°. In the crystal, bifurcated N—H⋯(O,Br) and O—H⋯Br hydrogen bonds and S⋯O contacts [S⋯O = 3.0526 (10) Å] connect the components into a three-dimensional network. The closest centroid–centroid distance between two π-systems is 3.7420 (7) Å between two benzene rings.

Related literature

For the crystal structure of 2-(o-hy­droxy­phen­yl)benzothia­zole, see: Stenson (1970[Stenson, P. (1970). Acta Chem. Scand. 24, 3729-3738.]); Aydin et al. (1999[Aydin, A., Soylu, H., Akkurt, M., Arici, C. & Erdemir, M. (1999). Z. Kristallogr. New Cryst. Struct. 214, 529-530.]); Jia & Jin (2009[Jia, A.-Q. & Jin, G.-X. (2009). Dalton Trans. pp. 8838-8845.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For our continuing efforts to create new radio-pharmaceuticals, see: Gerber et al. (2011[Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739-1745.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2OS+·Br·H2O

  • Mr = 327.20

  • Triclinic, [P \overline 1]

  • a = 5.6480 (2) Å

  • b = 9.9900 (3) Å

  • c = 11.2070 (3) Å

  • α = 88.808 (1)°

  • β = 83.098 (1)°

  • γ = 87.914 (1)°

  • V = 627.25 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.44 mm−1

  • T = 100 K

  • 0.54 × 0.32 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 1.000

  • 11074 measured reflections

  • 3084 independent reflections

  • 3004 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.042

  • S = 1.07

  • 3084 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯Br1 0.89 (2) 2.40 (2) 3.2708 (10) 168.2 (17)
N2—H72⋯O90i 0.832 (19) 1.930 (19) 2.7390 (15) 163.6 (17)
O90—H901⋯Br1 0.81 (2) 2.55 (2) 3.3485 (11) 170 (2)
O90—H902⋯Br1ii 0.85 (2) 2.49 (2) 3.3360 (10) 176 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our continuous efforts to create new radio-pharmaceuticals (Gerber et al., 2011), we attempted the coordination reaction of a bidentate ligand towards a rhenium(V) precursor upon which a crystalline reaction product was obtained. The crystal structure analysis showed the unintentional synthesis of a protonated derivative of the ligand. The structure of 2-(o-hydroxyphenyl)benzothiazole is apparent in the literature (Stenson, 1970; Aydin et al., 1999; Jia & Jin, 2009).

In the molecule, the – possible – hydroxy-pyridine moiety is present as its keto-tautomer. Protonation took place on the nitrogen atom of the five-membered heterocyclic subunit. The molecule is essentially flat, the least-squares planes defined by the ring atoms of the benzothiazol moiety and the ring atoms of the hydroxy-pyridine tautomer enclose an angle of only 6.91 (6) °. One molecule of solvent water is present in the crystal structure (Fig. 1).

In the crystal structure, hydrogen bonds as well as S···O contacts (whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms) are present. While the hydrogen bonds originating from the solvent water as well as the protonated nitrogen atom of the five-membered heterocyclic subunit exclusively have the bromide anion as acceptor, the water molecule's oxygen atom serves as acceptor for the hydrogen atom of the intracyclic NH group in the six-membered heterocycle. The pattern formed by the water molecules connecting the bromide anions is reminiscent of a parallelogram (Fig. 2). The S···O contacts give rise to the formation of centrosymmetric dimers. In total, the components of the crystal structure are connected to a three-dimensional network. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonding system is DDDD on the unitary level. The parallelogram shaped pattern necessitates a R42(8) descriptor on the binary level. The description of the S···O contacts is possible by a R22(10) descriptor on the unitary level. The closest intercentroid distance between two π-systems was found at 3.7420 (7) Å and was observed between two phenyl-moieties.

The packing of the title compound is shown in Figure 3.

Related literature top

For the crystal structure of 2-(o-hydroxyphenyl)benzothiazole, see: Stenson (1970); Aydin et al. (1999); Jia & Jin (2009). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For our continuing efforts to create new radio-pharmaceuticals, see: Gerber et al. (2011).

Experimental top

The compound was unintentionally obtained upon reacting ReOBr3(PPh3)2 and the unprotonated title compound in methanol. Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of the solvent at room temperature in the course of three days.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydrogen atoms on the water molecule as well as on both nitrogen atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Molecular packing and intermolecular interactions in the crystal structure of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level). Blue dashed lines indicate hydrogen bonds, green dashed lines S···O contacts and magenta dashed lines π···π interactions.
2-(1,2-Dihydro-2-oxopyridin-3-yl)-1,3-benzothiazol-3-ium bromide monohydrate top
Crystal data top
C12H9N2OS+·Br·H2OZ = 2
Mr = 327.20F(000) = 328
Triclinic, P1Dx = 1.732 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 5.6480 (2) ÅCell parameters from 9765 reflections
b = 9.9900 (3) Åθ = 2.7–28.3°
c = 11.2070 (3) ŵ = 3.44 mm1
α = 88.808 (1)°T = 100 K
β = 83.098 (1)°Platelet, brown
γ = 87.914 (1)°0.54 × 0.32 × 0.12 mm
V = 627.25 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube3004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.825, Tmax = 1.000k = 1313
11074 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0186P)2 + 0.3513P]
where P = (Fo2 + 2Fc2)/3
3084 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H9N2OS+·Br·H2Oγ = 87.914 (1)°
Mr = 327.20V = 627.25 (3) Å3
Triclinic, P1Z = 2
a = 5.6480 (2) ÅMo Kα radiation
b = 9.9900 (3) ŵ = 3.44 mm1
c = 11.2070 (3) ÅT = 100 K
α = 88.808 (1)°0.54 × 0.32 × 0.12 mm
β = 83.098 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3004 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.015
11074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.56 e Å3
3084 reflectionsΔρmin = 0.28 e Å3
179 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75599 (5)0.38684 (3)0.03656 (3)0.01156 (6)
O10.88103 (16)0.57056 (9)0.18446 (8)0.01639 (17)
N10.35814 (18)0.30153 (10)0.13371 (9)0.01243 (19)
H710.234 (4)0.2828 (19)0.1871 (17)0.030 (5)*
N20.66139 (19)0.65833 (10)0.34986 (9)0.01387 (19)
H720.763 (3)0.7156 (18)0.3540 (16)0.022 (4)*
C10.5225 (2)0.38913 (11)0.15043 (10)0.0116 (2)
C110.6208 (2)0.26265 (11)0.03624 (11)0.0126 (2)
C120.4045 (2)0.22857 (12)0.02886 (10)0.0123 (2)
C130.2600 (2)0.13350 (12)0.01177 (11)0.0149 (2)
H130.11220.11150.03270.018*
C140.3400 (2)0.07239 (12)0.11923 (11)0.0155 (2)
H140.24470.00770.14970.019*
C150.5597 (2)0.10425 (12)0.18438 (11)0.0158 (2)
H150.61150.05930.25730.019*
C160.7025 (2)0.19979 (12)0.14454 (11)0.0145 (2)
H160.85030.22180.18910.017*
C210.6958 (2)0.56953 (12)0.25575 (11)0.0130 (2)
C220.5014 (2)0.48055 (11)0.24945 (10)0.0120 (2)
C230.2978 (2)0.48983 (12)0.33208 (11)0.0138 (2)
H230.17080.43130.32660.017*
C240.2781 (2)0.58459 (12)0.42333 (11)0.0152 (2)
H240.13910.59090.48010.018*
C250.4628 (2)0.66773 (12)0.42904 (11)0.0151 (2)
H250.45090.73330.48990.018*
Br10.08317 (2)0.185566 (11)0.318117 (10)0.01427 (4)
O900.0626 (2)0.13628 (10)0.59698 (10)0.0246 (2)
H9010.039 (4)0.139 (2)0.527 (2)0.044 (6)*
H9020.076 (4)0.054 (2)0.617 (2)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01040 (12)0.01293 (13)0.01129 (13)0.00208 (10)0.00043 (10)0.00055 (10)
O10.0139 (4)0.0194 (4)0.0157 (4)0.0049 (3)0.0005 (3)0.0020 (3)
N10.0114 (4)0.0137 (5)0.0121 (5)0.0021 (4)0.0003 (4)0.0001 (4)
N20.0150 (5)0.0126 (5)0.0144 (5)0.0033 (4)0.0025 (4)0.0003 (4)
C10.0107 (5)0.0121 (5)0.0120 (5)0.0002 (4)0.0020 (4)0.0018 (4)
C110.0139 (5)0.0114 (5)0.0130 (5)0.0011 (4)0.0039 (4)0.0008 (4)
C120.0135 (5)0.0121 (5)0.0114 (5)0.0006 (4)0.0023 (4)0.0004 (4)
C130.0137 (5)0.0147 (5)0.0163 (6)0.0017 (4)0.0023 (4)0.0008 (4)
C140.0177 (6)0.0135 (5)0.0165 (6)0.0033 (4)0.0058 (5)0.0005 (4)
C150.0202 (6)0.0153 (5)0.0121 (5)0.0004 (5)0.0028 (4)0.0014 (4)
C160.0144 (5)0.0155 (5)0.0133 (5)0.0001 (4)0.0006 (4)0.0017 (4)
C210.0147 (5)0.0128 (5)0.0117 (5)0.0004 (4)0.0029 (4)0.0014 (4)
C220.0130 (5)0.0115 (5)0.0118 (5)0.0001 (4)0.0027 (4)0.0003 (4)
C230.0132 (5)0.0129 (5)0.0155 (5)0.0008 (4)0.0020 (4)0.0007 (4)
C240.0144 (5)0.0153 (5)0.0149 (5)0.0007 (4)0.0014 (4)0.0007 (4)
C250.0191 (6)0.0126 (5)0.0135 (5)0.0011 (4)0.0019 (4)0.0012 (4)
Br10.01712 (7)0.01291 (6)0.01233 (6)0.00307 (4)0.00086 (4)0.00021 (4)
O900.0405 (6)0.0142 (5)0.0219 (5)0.0057 (4)0.0138 (4)0.0005 (4)
Geometric parameters (Å, º) top
S1—C11.7215 (12)C14—C151.4059 (18)
S1—C111.7461 (12)C14—H140.9500
O1—C211.2379 (15)C15—C161.3859 (17)
N1—C11.3304 (15)C15—H150.9500
N1—C121.3887 (15)C16—H160.9500
N1—H710.89 (2)C21—C221.4469 (17)
N2—C251.3457 (16)C22—C231.3885 (16)
N2—C211.3835 (15)C23—C241.3998 (17)
N2—H720.832 (19)C23—H230.9500
C1—C221.4429 (16)C24—C251.3653 (18)
C11—C121.3949 (16)C24—H240.9500
C11—C161.3987 (17)C25—H250.9500
C12—C131.3924 (17)O90—H9010.81 (2)
C13—C141.3809 (17)O90—H9020.85 (2)
C13—H130.9500
C1—S1—C1190.47 (6)C16—C15—C14121.41 (11)
C1—N1—C12115.00 (10)C16—C15—H15119.3
C1—N1—H71124.5 (13)C14—C15—H15119.3
C12—N1—H71120.2 (12)C15—C16—C11117.47 (11)
C25—N2—C21124.55 (11)C15—C16—H16121.3
C25—N2—H72116.9 (12)C11—C16—H16121.3
C21—N2—H72118.2 (12)O1—C21—N2120.39 (11)
N1—C1—C22123.82 (11)O1—C21—C22124.89 (11)
N1—C1—S1112.33 (9)N2—C21—C22114.72 (11)
C22—C1—S1123.78 (9)C23—C22—C1122.07 (11)
C12—C11—C16120.69 (11)C23—C22—C21120.46 (11)
C12—C11—S1110.79 (9)C1—C22—C21117.35 (10)
C16—C11—S1128.53 (10)C22—C23—C24120.61 (11)
N1—C12—C13126.76 (11)C22—C23—H23119.7
N1—C12—C11111.41 (10)C24—C23—H23119.7
C13—C12—C11121.83 (11)C25—C24—C23118.57 (11)
C14—C13—C12117.41 (11)C25—C24—H24120.7
C14—C13—H13121.3C23—C24—H24120.7
C12—C13—H13121.3N2—C25—C24121.06 (11)
C13—C14—C15121.18 (12)N2—C25—H25119.5
C13—C14—H14119.4C24—C25—H25119.5
C15—C14—H14119.4H901—O90—H902107 (2)
C12—N1—C1—C22175.97 (10)C12—C11—C16—C150.60 (17)
C12—N1—C1—S10.99 (13)S1—C11—C16—C15179.35 (9)
C11—S1—C1—N10.50 (9)C25—N2—C21—O1177.54 (11)
C11—S1—C1—C22176.46 (10)C25—N2—C21—C222.08 (17)
C1—S1—C11—C120.09 (9)N1—C1—C22—C234.11 (18)
C1—S1—C11—C16179.95 (11)S1—C1—C22—C23172.51 (9)
C1—N1—C12—C13178.24 (11)N1—C1—C22—C21179.71 (10)
C1—N1—C12—C111.06 (14)S1—C1—C22—C213.67 (15)
C16—C11—C12—N1179.40 (10)O1—C21—C22—C23178.23 (11)
S1—C11—C12—N10.64 (12)N2—C21—C22—C231.36 (16)
C16—C11—C12—C131.25 (18)O1—C21—C22—C11.99 (18)
S1—C11—C12—C13178.71 (9)N2—C21—C22—C1177.61 (10)
N1—C12—C13—C14179.89 (11)C1—C22—C23—C24176.56 (11)
C11—C12—C13—C140.66 (18)C21—C22—C23—C240.50 (18)
C12—C13—C14—C150.55 (18)C22—C23—C24—C250.17 (18)
C13—C14—C15—C161.19 (19)C21—N2—C25—C241.87 (19)
C14—C15—C16—C110.59 (18)C23—C24—C25—N20.80 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···Br10.89 (2)2.40 (2)3.2708 (10)168.2 (17)
N2—H72···O90i0.832 (19)1.930 (19)2.7390 (15)163.6 (17)
O90—H901···Br10.81 (2)2.55 (2)3.3485 (11)170 (2)
O90—H902···Br1ii0.85 (2)2.49 (2)3.3360 (10)176 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H9N2OS+·Br·H2O
Mr327.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.6480 (2), 9.9900 (3), 11.2070 (3)
α, β, γ (°)88.808 (1), 83.098 (1), 87.914 (1)
V3)627.25 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.44
Crystal size (mm)0.54 × 0.32 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11074, 3084, 3004
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.07
No. of reflections3084
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.28

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···Br10.89 (2)2.40 (2)3.2708 (10)168.2 (17)
N2—H72···O90i0.832 (19)1.930 (19)2.7390 (15)163.6 (17)
O90—H901···Br10.81 (2)2.55 (2)3.3485 (11)170 (2)
O90—H902···Br1ii0.85 (2)2.49 (2)3.3360 (10)176 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors thank Ms Dakota Neil-Schutte for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAydin, A., Soylu, H., Akkurt, M., Arici, C. & Erdemir, M. (1999). Z. Kristallogr. New Cryst. Struct. 214, 529–530.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.  Web of Science CSD CrossRef CAS Google Scholar
First citationJia, A.-Q. & Jin, G.-X. (2009). Dalton Trans. pp. 8838–8845.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStenson, P. (1970). Acta Chem. Scand. 24, 3729–3738.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds