organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1616-o1617

(2E)-1-(4-Amino­phen­yl)-3-(2,4-di­chloro­phen­yl)prop-2-en-1-one

aChemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India, bDepartment of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225 001, Uttar Pradesh, India, and cNanoscience and Nanotechnology, Department of Chemistry, University of Delhi, Delhi 110 007, India
*Correspondence e-mail: awasthisatish@yahoo.com

(Received 22 April 2011; accepted 28 May 2011; online 11 June 2011)

The title compound, C15H11Cl2NO, is approximately planar (r.m.s. deviation = 0.062 Å) and contains a single C=C double bond in a trans (E) configuration. The crystal packing is stabilized by intermolecular N—H⋯N and N—H⋯O inter­molecular hydrogen bonding.

Related literature

For related flavonoids, see: Bargellini & Marini-Bettolo (1940[Bargellini, G. & Marini-Bettolo, G. B. (1940). Gazz. Chim. Ital. 70, 170-178.]). For isoflavonoids, see: Nógrádi & Szöllösy (1996[Nógrádi, M. & Szöllösy, Á. (1996). Liebigs Ann. Chem. 10, 1651-1652.]). For the biological activities of chalcones, see: Go et al. (2005[Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.]); Hans et al. (2010[Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942-944.]); Trivedi et al. (2007[Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Soshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472-8474.]); Nielsen et al. (2004[Nielsen, S. F., Bosen, T., Larsen, M., Schonning, K. & Kromann, H. (2004). Bioorg. Med. Chem. 12, 3047-3054.]). For anti­malarial activity, see: Mishra et al. (2008[Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530-1535.]). For anti­filarial activity, see: Awasthi, Mishra, Dixit et al. (2009[Awasthi, S. K., Mishra, N., Dixit, S. K., Singh, A., Yadav, M., Yadav, S. S. & Rathaur, S. (2009). Am. J. Trop. Med. Hyg. 80, 764-768.]). For other chalcone crystal structures and small mol­ecules, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1464.]); Li et al. (2009[Li, H., Kamath, K. P., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1915.]); Singh et al. (2011[Singh, M. K., Agarwal, A., Mahawar, C. & Awasthi, S. K. (2011). Acta Cryst. E67, o1382.]). For the synthesis, see: Migrdichian (1957[Migrdichian, V. (1957). Organic Synthesis, Vol. 1, pp.171-173. New York: Reinhold Publishing Co.]); Awasthi, Mishra, Kumar et al. (2009[Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407-420.]). For inter­molecular N—H⋯N and N—H⋯O hydrogen bonding, see: Fonar et al. (2001[Fonar, M. S., Simonov, Yu. A., Kravtsov, V. H., Lipkowski, J., Javolowski, A. A. & Ganin, É. V. (2001). J. Struct. Chem. 42, 459-469.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11Cl2NO

  • Mr = 292.15

  • Monoclinic, P 21 /c

  • a = 22.771 (2) Å

  • b = 3.9889 (5) Å

  • c = 14.7848 (18) Å

  • β = 92.401 (12)°

  • V = 1341.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.23 × 0.11 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.597, Tmax = 1.000

  • 5765 measured reflections

  • 2625 independent reflections

  • 1733 reflections with I > 2σ(I)

  • Rint = 0.047

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 0.98

  • 2625 reflections

  • 216 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.78 (3) 2.210 2.977 (4) 171 (3)
N1—H2N1⋯N1ii 0.76 (4) 2.469 3.134 (5) 147 (4)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcones (trans-1,3-diphenyl-2-propen-1-ones) are precursor of various natural products such as flavonoids (Bargellini & Marini-Bettolo, 1940), isoflavanoids (Nógrádi & Szöllösy, 1996) and key intermediates for synthesis of various heterocyclic scaffolds. Chalcone consists of two aromatic rings joined together by a three carbon α, β-unsaturated carbonyl system (Figure 1). These compounds have broad range of biological activities such as anticancer (Go et al., 2005), antimalarial activity (Mishra et al. 2008), anti-TB activity (Hans et al. 2010), antiviral (Trivedi et al., 2007), antibacterial (Nielsen et al., 2004) and more recently antifilarial activity (Awasthi, Mishra, Dixit et al. 2009) etc. Further, SAR on substituted chalcones reveal that presence of α, β-unsaturated ketone is critical for activity in which double bond is in a trans (E)-configuration (Li et al., 2009). The crystal structures of few substituted chalcones have been recently reported (Fun et al., 2008; Li et al., 2009). As a part of our ongoing research work on antimicrobial activities of substituted chalcones and crystal structure analysis of small molecules (Singh et al., 2011), we further explored the possibility of characterization of chalcone in the solid state. We crystallized substituted chalcone (2E)-1-(4-aminophenyl)-4-(2,4-dichlorophenyl) but-2-en-1-one,in the mixture of methanol and acetone at room temperature. In this paper, we report the single-crystal X-ray structure of the title compound and possible role of hydrogen bonding in the structure stabilization. The crystal packing is stabilized by intermolecular hydrogen bonding between N1-H2N1···N1 and N1-H1N1···O1(Fonar et al., 2001).as shown in packing diagram along b axis(figure 2, table 1).The torsion angle between atom C7—C8 - C9—C10 is 177.8 (3)°. The aminophenyl ring, dichlorophenyl ring and central ketone group are in the same plane, thus molecule is planer. The CCDC No. of the crystal is 797089.

Related literature top

For related flavonoids, see: Bargellini & Marini-Bettolo (1940). For isoflavonoids, see: Nógrádi & Szöllösy (1996). For biological activities of chalcones, see: Go et al. (2005); Hans et al. (2010); Trivedi et al. (2007); Nielsen et al. (2004). For antimalarial activity, see: Mishra et al. (2008). For antifilarial activity, see: Awasthi, Mishra, Dixit et al. (2009). For other chalcone crystal structures and small molecules, see: Fun et al. (2008); Li et al. (2009). Singh et al. (2011). For synthesis, see: Migrdichian (1957); Awasthi, Mishra, Kumar et al. (2009). For intermolecular hydrogen bonding between N—H···N and N—H···O, see: Fonar et al. (2001).

Experimental top

The synthesis of the title compound was carried out according to the published procedure (Migrdichian 1957; Awasthi, Mishra, Kumar et al., 2009). Briefly, an aqueous solution of sodium hydroxide (10%, 10 ml) was added to a solution of acetlylated 4-aminoacetophenone (1.77 g m, 10 mmol) and 2, 4-dichlorobenzaldehyde (1.73 g m, 10 mmol) in minimum amount of methanol (3–5 ml) at ice cooled flask. The reaction mixture was allowed to draw closer to room temperature and stirred for 18–20 hrs yielded a yellow solid. The completion of the reaction was monitored by thin layer chromatography. After completion of the reaction, the mixture was neutralized with 10% hydrochloric acid in water. The acetyl group was removed by refluxing with HCl/C2H5OH for 4hrs. The product was recrystallized from dry methanol and acetone in 1:1 ratio. After few weeks, light yellow single crystals were obtained. Yield 70%. Rf = 0.64 (CHCl3: MeOH, 99:1). MS (Macromass G) m/z = 292.16 (M+). Elemental analysis (Perkin Elmer): Calcd. for C15 H11 Cl2 NO: C 61.67, H 3.79, Cl 24.26, N 4.79, O 5.48%. Found C 61.70, H 3.81, Cl 24.23, N 4.83, O 5.44%. IR (Perkin Elmer Fourier transform Spectrometer with KBr pellets (cm-1): 3462.18–3369.75 (–NH2), 2925.42- 2851.54 (aromatic), 1704.23 (C=O in conjugation C=C), 1656.19 (C=C str aromatic), 1584.94 (C=C str in conjugation CO—C=C), 1269.49 (C—N str), 1018.68–1105.40 (C—O—C str), C—Cl (867.02–814.49). 13C-NMR (CDCl3, 300 MHz): δ 186.66, 152.16, 136.54, 135.27, 135.13, 131.78, 130.75, 130.22, 129.38, 128.07, 127.03, 126.46, 124.75, 113.20, 113.00. 1HNMR (Brucker AMX, 300 MHz, CDCl3): δ 4. 196 (s, 2H, NH2), δ 6.7 (d, 2H, H2 and H6, J = 8.7 Hz), δ 7.92 (d, 2H, H3 and H5, J = 8.4 Hz), δ 7.46 (d, 1H, Hα, J = 15.6 Hz), δ 8.06 (d, 1H, Hβ, J = 15.6 Hz), δ 7.463 (s, 1H, H'3), δ 7.29 (d, 1H, H'5, J = 6.9 Hz), δ 7.67 (d, 1H, H'6, J = 8.4 Hz).

Refinement top

All the H atoms were located from difference Fourier map [range of C—H = 0.81 (4) - 1.10 (3) Å] and N–H = 0.76 (4)–0.78 (4)] and allowed to refine freely.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; blue: N; white: H; Green: Cl; Green: F
[Figure 2] Fig. 2. Packing diagram of molecule viewed through b plane showing Intermolecular hydrogen bonding.
[Figure 3] Fig. 3. The formation of the title compound.
(2E)-1-(4-Aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one top
Crystal data top
C15H11Cl2NOF(000) = 600
Mr = 292.15Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1458 reflections
a = 22.771 (2) Åθ = 3.0–29.0°
b = 3.9889 (5) ŵ = 0.47 mm1
c = 14.7848 (18) ÅT = 293 K
β = 92.401 (12)°Rod, yellow
V = 1341.7 (3) Å30.23 × 0.11 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2625 independent reflections
Radiation source: fine-focus sealed tube1733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2528
Tmin = 0.597, Tmax = 1.000k = 34
5765 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159All H-atom parameters refined
S = 0.98 w = 1/[σ2(Fo2) + (0.0919P)2]
where P = (Fo2 + 2Fc2)/3
2625 reflections(Δ/σ)max = 0.003
216 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H11Cl2NOV = 1341.7 (3) Å3
Mr = 292.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.771 (2) ŵ = 0.47 mm1
b = 3.9889 (5) ÅT = 293 K
c = 14.7848 (18) Å0.23 × 0.11 × 0.08 mm
β = 92.401 (12)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2625 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1733 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 1.000Rint = 0.047
5765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.159All H-atom parameters refined
S = 0.98Δρmax = 0.33 e Å3
2625 reflectionsΔρmin = 0.29 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85377 (14)0.5099 (8)0.5485 (2)0.0466 (8)
C20.91136 (15)0.6162 (9)0.5505 (2)0.0496 (8)
C30.93472 (13)0.7698 (8)0.6273 (2)0.0454 (8)
C40.90165 (14)0.8197 (8)0.7010 (2)0.0465 (8)
C50.84351 (14)0.7060 (8)0.6984 (2)0.0440 (7)
C60.81845 (12)0.5488 (7)0.62200 (19)0.0376 (7)
C70.75725 (13)0.4285 (8)0.6200 (2)0.0434 (8)
C80.72868 (14)0.2879 (9)0.5517 (2)0.0452 (8)
C90.66735 (13)0.1629 (7)0.5571 (2)0.0403 (7)
C100.63905 (12)0.0047 (7)0.47851 (18)0.0334 (6)
C110.66507 (13)0.0353 (8)0.3948 (2)0.0408 (7)
C120.63760 (13)0.1948 (8)0.3229 (2)0.0421 (7)
C130.58122 (12)0.3296 (7)0.33087 (19)0.0344 (7)
C140.55456 (13)0.2959 (8)0.4125 (2)0.0384 (7)
C150.58231 (13)0.1377 (8)0.4847 (2)0.0392 (7)
N10.55305 (14)0.4825 (8)0.2576 (2)0.0443 (7)
O10.64210 (10)0.1991 (6)0.62783 (15)0.0604 (7)
Cl11.00725 (4)0.9059 (2)0.63141 (7)0.0648 (3)
Cl20.80366 (5)0.7782 (3)0.79390 (6)0.0786 (4)
H10.8413 (15)0.404 (8)0.482 (2)0.057 (9)*
H1N10.5731 (15)0.545 (9)0.220 (2)0.041 (10)*
H20.9359 (16)0.602 (9)0.509 (2)0.058 (10)*
H2N10.5329 (19)0.618 (10)0.275 (3)0.067 (15)*
H40.9136 (16)0.923 (9)0.749 (3)0.065 (11)*
H70.7369 (18)0.430 (10)0.674 (3)0.078 (12)*
H80.7462 (17)0.234 (9)0.505 (3)0.065 (12)*
H110.7039 (18)0.068 (10)0.384 (3)0.075 (11)*
H120.6574 (14)0.213 (7)0.271 (2)0.042 (8)*
H140.5245 (17)0.397 (9)0.422 (2)0.060 (11)*
H150.5611 (13)0.119 (7)0.537 (2)0.038 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (17)0.055 (2)0.0431 (18)0.0017 (16)0.0039 (14)0.0028 (16)
C20.0424 (18)0.056 (2)0.051 (2)0.0029 (16)0.0079 (16)0.0013 (17)
C30.0372 (15)0.0416 (17)0.056 (2)0.0002 (14)0.0094 (15)0.0068 (15)
C40.0461 (18)0.0424 (19)0.050 (2)0.0059 (15)0.0119 (16)0.0010 (16)
C50.0446 (17)0.0468 (18)0.0400 (16)0.0010 (15)0.0043 (14)0.0017 (14)
C60.0349 (15)0.0369 (16)0.0403 (16)0.0002 (13)0.0054 (13)0.0005 (13)
C70.0380 (16)0.0498 (19)0.0424 (17)0.0030 (15)0.0007 (14)0.0002 (15)
C80.0368 (16)0.057 (2)0.0421 (18)0.0077 (15)0.0036 (15)0.0031 (16)
C90.0370 (15)0.0422 (18)0.0414 (17)0.0001 (14)0.0004 (14)0.0033 (14)
C100.0268 (13)0.0373 (16)0.0361 (15)0.0007 (12)0.0003 (11)0.0033 (12)
C110.0286 (14)0.0513 (19)0.0426 (17)0.0049 (14)0.0017 (13)0.0028 (15)
C120.0338 (15)0.057 (2)0.0362 (16)0.0001 (15)0.0057 (13)0.0007 (15)
C130.0303 (14)0.0349 (16)0.0374 (15)0.0042 (12)0.0043 (12)0.0009 (12)
C140.0275 (15)0.0425 (18)0.0452 (17)0.0054 (14)0.0007 (13)0.0031 (14)
C150.0333 (15)0.0470 (19)0.0378 (16)0.0013 (14)0.0068 (13)0.0016 (14)
N10.0372 (15)0.054 (2)0.0409 (16)0.0038 (15)0.0023 (13)0.0097 (15)
O10.0515 (13)0.0868 (19)0.0436 (13)0.0177 (13)0.0096 (11)0.0133 (12)
Cl10.0387 (5)0.0691 (6)0.0857 (7)0.0114 (4)0.0079 (4)0.0039 (5)
Cl20.0705 (6)0.1094 (9)0.0565 (6)0.0218 (6)0.0104 (5)0.0299 (6)
Geometric parameters (Å, º) top
C1—C21.377 (5)C9—O11.223 (4)
C1—C61.388 (4)C9—C101.466 (4)
C1—H11.10 (3)C10—C111.399 (4)
C2—C31.377 (5)C10—C151.403 (4)
C2—H20.85 (4)C11—C121.368 (4)
C3—C41.365 (5)C11—H110.99 (4)
C3—Cl11.737 (3)C12—C131.401 (4)
C4—C51.399 (5)C12—H120.91 (3)
C4—H40.86 (4)C13—C141.381 (4)
C5—C61.393 (4)C13—N11.378 (4)
C5—Cl21.734 (3)C14—C151.371 (4)
C6—C71.473 (4)C14—H140.81 (4)
C7—C81.305 (4)C15—H150.93 (3)
C7—H70.94 (4)N1—H1N10.78 (4)
C8—C91.488 (4)N1—H2N10.76 (4)
C8—H80.84 (4)
C2—C1—C6122.1 (3)O1—C9—C10121.7 (3)
C2—C1—H1110.2 (18)O1—C9—C8118.8 (3)
C6—C1—H1127.6 (18)C10—C9—C8119.5 (3)
C3—C2—C1119.3 (3)C11—C10—C15116.7 (3)
C3—C2—H2113 (2)C11—C10—C9123.5 (3)
C1—C2—H2128 (2)C15—C10—C9119.7 (3)
C4—C3—C2121.1 (3)C12—C11—C10122.1 (3)
C4—C3—Cl1118.8 (2)C12—C11—H11117 (2)
C2—C3—Cl1120.1 (3)C10—C11—H11121 (2)
C3—C4—C5119.0 (3)C11—C12—C13120.2 (3)
C3—C4—H4125 (3)C11—C12—H12117.7 (19)
C5—C4—H4116 (3)C13—C12—H12122.0 (19)
C6—C5—C4121.5 (3)C14—C13—N1121.6 (3)
C6—C5—Cl2121.6 (2)C14—C13—C12118.3 (3)
C4—C5—Cl2116.8 (2)N1—C13—C12120.1 (3)
C1—C6—C5117.0 (3)C15—C14—C13121.4 (3)
C1—C6—C7121.8 (3)C15—C14—H14117 (3)
C5—C6—C7121.2 (3)C13—C14—H14120 (3)
C8—C7—C6126.6 (3)C14—C15—C10121.2 (3)
C8—C7—H7114 (2)C14—C15—H15116.4 (18)
C6—C7—H7119 (2)C10—C15—H15122.4 (18)
C7—C8—C9122.8 (3)C13—N1—H1N1116 (2)
C7—C8—H8120 (3)C13—N1—H2N1109 (3)
C9—C8—H8116 (3)H1N1—N1—H2N1113 (4)
C6—C1—C2—C30.8 (5)C7—C8—C9—O11.5 (5)
C1—C2—C3—C40.4 (5)C7—C8—C9—C10177.5 (3)
C1—C2—C3—Cl1180.0 (2)O1—C9—C10—C11176.4 (3)
C2—C3—C4—C51.3 (5)C8—C9—C10—C114.6 (4)
Cl1—C3—C4—C5179.1 (2)O1—C9—C10—C152.1 (4)
C3—C4—C5—C61.2 (5)C8—C9—C10—C15176.8 (3)
C3—C4—C5—Cl2179.8 (2)C15—C10—C11—C121.8 (4)
C2—C1—C6—C50.9 (5)C9—C10—C11—C12179.7 (3)
C2—C1—C6—C7178.8 (3)C10—C11—C12—C131.0 (5)
C4—C5—C6—C10.1 (5)C11—C12—C13—C140.2 (4)
Cl2—C5—C6—C1178.6 (2)C11—C12—C13—N1178.3 (3)
C4—C5—C6—C7179.7 (3)N1—C13—C14—C15178.7 (3)
Cl2—C5—C6—C71.7 (4)C12—C13—C14—C150.6 (4)
C1—C6—C7—C82.6 (5)C13—C14—C15—C100.2 (5)
C5—C6—C7—C8177.8 (3)C11—C10—C15—C141.4 (4)
C6—C7—C8—C9177.8 (3)C9—C10—C15—C14180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.78 (3)2.2102.977 (4)171 (3)
N1—H2N1···N1ii0.76 (4)2.4693.134 (5)147 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11Cl2NO
Mr292.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)22.771 (2), 3.9889 (5), 14.7848 (18)
β (°) 92.401 (12)
V3)1341.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.23 × 0.11 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.597, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5765, 2625, 1733
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 0.98
No. of reflections2625
No. of parameters216
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.78 (3)2.2102.977 (4)171 (3)
N1—H2N1···N1ii0.76 (4)2.4693.134 (5)147 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

SKA is thankful to the University Grants Commission (UGC) [scheme F. No. 37-410/2009(SR)] and the University of Delhi, India, for financial assistance. The authors are highly thankful to the University Sophisticated Instrument Center (USIC), University of Delhi, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationAwasthi, S. K., Mishra, N., Dixit, S. K., Singh, A., Yadav, M., Yadav, S. S. & Rathaur, S. (2009). Am. J. Trop. Med. Hyg. 80, 764–768.  Web of Science PubMed CAS Google Scholar
First citationAwasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420.  Web of Science CrossRef CAS Google Scholar
First citationBargellini, G. & Marini-Bettolo, G. B. (1940). Gazz. Chim. Ital. 70, 170–178.  CAS Google Scholar
First citationFonar, M. S., Simonov, Yu. A., Kravtsov, V. H., Lipkowski, J., Javolowski, A. A. & Ganin, É. V. (2001). J. Struct. Chem. 42, 459–469.  CrossRef CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGo, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationHans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942–944.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, H., Kamath, K. P., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMigrdichian, V. (1957). Organic Synthesis, Vol. 1, pp.171–173. New York: Reinhold Publishing Co.  Google Scholar
First citationMishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNielsen, S. F., Bosen, T., Larsen, M., Schonning, K. & Kromann, H. (2004). Bioorg. Med. Chem. 12, 3047–3054.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNógrádi, M. & Szöllösy, Á. (1996). Liebigs Ann. Chem. 10, 1651–1652.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, M. K., Agarwal, A., Mahawar, C. & Awasthi, S. K. (2011). Acta Cryst. E67, o1382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Soshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1616-o1617
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds