organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1754-o1755

Ethyl 3-(2-chloro-5,8-dimeth­­oxy­quinolin-3-yl)-2-cyano­oxirane-2-carboxyl­ate

aLaboratoire des Produits Naturels d'Origine, Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 8 June 2011; accepted 15 June 2011; online 22 June 2011)

The title mol­ecule, C17H15ClN2O5, contains a quinolyl unit linked to a functionalized oxirane system with a 2,3-trans arrangement of the substituents (ester group versus quinol­yl). The structure can be described as being built up from zigzag layers parallel to (1[\overline{1}]0). The heterocyclic ring of the quinolyl unit forms a dihedral angle of 60.05 (1)° with the oxirane plane. The crystal packing is stabilized by inter­molecular C—H⋯O and C—H⋯N hydrogen bonding, resulting in the formation of an infinite three-dimensional network and reinforcing the cohesion between the layers.

Related literature

For applications of quinoline derivatives, see: Kansagra et al. (2000[Kansagra, B. P., Bhatt, H. H. & Parikh, A. R. (2000). Indian J. Heterocycl. Chem. 10, 5-8.]); Vasquez et al. (2004[Vasquez, M. T., Romero, M. & Pujol, M. D. (2004). Bioorg. Med. Chem. 12, 949-956.]); Guo et al. (2009[Guo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). Eur. J. Med. Chem. 44, 954-958.]) Cunico et al. (2006[Cunico, W., Cechinel, C., Bonacorso, H., Martins, M., Zannata, N., de Souza, N., Freitas, I., Soares, R. & Krettli, A. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); Mahamoud et al. (2006[Mahamoud, A., Chevalier, J., Davin-Regli, A., Baebe, J. & Pages, J. M. (2006). Curr. Drug Targets, 7, 843-847.]); Kumar et al. (2008[Kumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. (2008). Tetrahedron, 64, 536-542.]); Hong et al. (2010[Hong, M., Cai, C. & Yi, W. B. (2010). J. Fluorine Chem. 131, 111-114.]). For the biological activity of naturally occurring oxiranes, see: Bino (1980[Bino, A. (1980). J. Am. Chem. Soc. 102, 1990-1991.]); Cross (1960[Cross, A. D. (1960). Q. Rev. Chem. Soc. 14, 317-335.]); Marco-Contelles et al. (2004[Marco-Contelles, J., Molina, M. T. & Anjum, S. (2004). Chem. Rev. 6, 2857-2900.]); Pearson & Ong (1981[Pearson, A. J. & Ong, C. W. (1981). J. Am. Chem. Soc. 103, 6686-6690.]). For applications of oxiranes, see: Hanson (1991[Hanson, R. M. (1991). Chem. Rev. 91, 437-475.]); Kumar & Leelavathi (2007[Kumar, S. R. & Leelavathi, P. (2007). J. Mol. Catal. A Chem. 266, 65-68.]); Das et al. (2007[Das, B., Reedy, V. S., Krishnaiah, M. & Rao, Y. K. (2007). J. Mol. Catal. A Chem. 270, 89-92.]); Boukhris et al. (1996[Boukhris, S., Souizi, A. & Robert, A. (1996). Tetrahedron Lett. 37, 4693-4696.]); Ammadi et al., (1999[Ammadi, F., Boukhris, S., Souizi, A. & Coudert, G. (1999). Tetrahedron Lett. 40, 6517-6518.]). For our previous work on the preparation of quinoline derivatives, see: Bouraiou et al. (2008[Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329-333.]); Benzerka et al. (2008[Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089-o2090.]); Ladraa et al. (2010[Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693.]). For weak hydrogen bonds, see: Desiraju & Steiner, (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClN2O5

  • Mr = 362.76

  • Triclinic, [P \overline 1]

  • a = 8.3784 (3) Å

  • b = 10.1071 (4) Å

  • c = 10.7027 (4) Å

  • α = 102.489 (2)°

  • β = 103.977 (2)°

  • γ = 96.026 (2)°

  • V = 846.77 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 K

  • 0.28 × 0.21 × 0.12 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.842, Tmax = 0.970

  • 12867 measured reflections

  • 3803 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 1.02

  • 3803 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N19i 0.95 2.57 3.434 (3) 151
C24—H24A⋯O16ii 0.98 2.57 3.152 (4) 118
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Due to their presence in a large number of natural products and bioactive compounds and their close association with the biological activities, quinoline and their derivatives have been extensively investigated by organic and biological chemists (Kansagra et al., 2000; Vasquez et al., 2004; Guo et al., 2009). They are used in production of anti-malarial, antibiotics, anti-hypertension, anti-diabetic and so many other drugs (Cunico et al., 2006; Mahamoud et al., 2006; Kumar et al. 2008; Hong et al. 2010).

Oxiranes are important intermediates and starting materials which have found much use in synthetic organic chemistry owing to their ease of formation and ready activity toward nucleophiles (Hanson et al., 1991; Kumar et al., 2007; Das et al. 2007). In addition, natural occurring oxiranes are associated with various biological activities (Cross, 1960; Bino, 1980; Pearson et al., 1981; Marco-Contelles et al., 2004). 2-cyano-2-alkoxycarbonyloxiranes proved to be versatile reagents from which a large variety of compounds might be synthesized (Boukhris et al., 1996; Ammadi et al., 1999). In connection with our research program aimed at the synthesis and the biological evaluation of quinoline derivatives (Bouraiou et al., 2008; Benzerka et al., 2008; Ladraa et al., 2010), we report in this paper the synthesis and the structure determination by X-ray of a new quinoline compound where quinolyl moiety is linked to functionalized oxirane system. The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1.

In the asymmetric unit of title compound the oxiranes unit bearing an ester and cyano groups at C3 and quinolyl moiety at C2.

The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 2.43 (5)°. The heterocycle ring of quinolyl unit form also with oxirane plane a dihedral angle of 60.05 (1)°.

The crystal packing can be described as layers in zig zag parallel to (1–10) plane (Fig. 2). A weak hydrogen bond interactions (C—H···N=3.434 (3) Å)along the [110] directions ensure the stability in the same layer. (as reported by Desiraju & Steiner, 1999) These layers are linked together by a classical weak C—H···O interactions and π-π stacking The crystal packing is stabilized by intra and intermolecular hydrogen bond (C—H···N and C—H···O) and π-π stacking, resulting in the formation of infinite three-dimensional network linked these layers toghter and reinforcing a cohesion of structure (Fig. 3). Hydrogen-bonding parameters are listed in table 1.

Related literature top

For applications of quinoline derivatives, see: Kansagra et al. (2000); Vasquez et al. (2004); Guo et al. (2009) Cunico et al. (2006); Mahamoud et al. (2006); Kumar et al. (2008); Hong et al. (2010). For applications of oxiranes, see: Hanson (1991); Kumar & Leelavathi (2007); Das et al. (2007); Boukhris et al. (1996); Ammadi et al., (1999). For our previous work on the preparation of quinoline derivatives, see: Bouraiou et al. (2008); Benzerka et al. (2008); Ladraa et al. (2010). For weak hydrogen bonds, see: Desiraju & Steiner, (1999) For the biological activity of naturally occurring oxiranes, see: Bino (1980); Cross (1960); Marco-Contelles et al. (2004); Pearson & Ong (1981).

Experimental top

The title compound was obtained by oxidation of (E)-ethyl-3-(2-chloro-5,8-dimethoxyquinolin-3-yl)-2-cyanoacrylate with 2,5 equivalents of m-chloroperoxybenzoic acid in dichloromethane at room temperature in the presence of 1,2 equivalents of potassium carbonate. Column chromatography (silica gel, eluant: CH2Cl2) of the residue afforded pure product as yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane / methanol solution.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) the structure of the title compound with the atomic labelling scheme.Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [N—H···O and C—H···O] as dashed line.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001)A packing diagram of (I)viewed down the b axis.
Ethyl 3-(2-chloro-5,8-dimethoxyquinolin-3-yl)-2-cyanooxirane-2-carboxylate top
Crystal data top
C17H15ClN2O5Z = 2
Mr = 362.76F(000) = 376
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3784 (3) ÅCell parameters from 7904 reflections
b = 10.1071 (4) Åθ = 2.5–27.5°
c = 10.7027 (4) ŵ = 0.26 mm1
α = 102.489 (2)°T = 150 K
β = 103.977 (2)°Block, colourless
γ = 96.026 (2)°0.28 × 0.21 × 0.12 mm
V = 846.77 (6) Å3
Data collection top
Bruker APEXII
diffractometer
3369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1010
Tmin = 0.842, Tmax = 0.970k = 1313
12867 measured reflectionsl = 1310
3803 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5515P]
where P = (Fo2 + 2Fc2)/3
3803 reflections(Δ/σ)max = 0.006
229 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C17H15ClN2O5γ = 96.026 (2)°
Mr = 362.76V = 846.77 (6) Å3
Triclinic, P1Z = 2
a = 8.3784 (3) ÅMo Kα radiation
b = 10.1071 (4) ŵ = 0.26 mm1
c = 10.7027 (4) ÅT = 150 K
α = 102.489 (2)°0.28 × 0.21 × 0.12 mm
β = 103.977 (2)°
Data collection top
Bruker APEXII
diffractometer
3803 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3369 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.970Rint = 0.020
12867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
3803 reflectionsΔρmin = 0.42 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21857 (5)0.03042 (5)1.03331 (5)0.03620 (16)
C10.3363 (2)0.09251 (17)0.98421 (17)0.0277 (4)
N20.45074 (18)0.18016 (15)1.07892 (14)0.0279 (3)
C30.5441 (2)0.27800 (17)1.04347 (17)0.0274 (4)
C40.6751 (2)0.37174 (18)1.14484 (18)0.0312 (4)
O50.69369 (17)0.35382 (14)1.27008 (13)0.0379 (3)
C60.8178 (3)0.4523 (3)1.3736 (2)0.0508 (6)
H6A0.92720.4481.35670.076*
H6B0.82020.43181.45930.076*
H6C0.79090.54471.37560.076*
C70.7706 (2)0.4691 (2)1.1101 (2)0.0371 (4)
H70.85870.53091.1770.045*
C80.7410 (3)0.4798 (2)0.9768 (2)0.0387 (4)
H80.80910.54830.95580.046*
C90.6153 (2)0.3923 (2)0.8783 (2)0.0349 (4)
O100.5731 (2)0.39496 (16)0.74704 (15)0.0439 (4)
C110.6705 (3)0.4986 (2)0.7119 (2)0.0502 (6)
H11A0.66320.58940.76350.075*
H11B0.6280.49260.61680.075*
H11C0.78710.48480.73130.075*
C120.5154 (2)0.28768 (18)0.90951 (18)0.0307 (4)
C130.3894 (2)0.18913 (19)0.81199 (18)0.0326 (4)
H130.36690.19230.72140.039*
C140.2996 (2)0.08919 (18)0.84700 (17)0.0309 (4)
C150.1747 (3)0.0235 (2)0.74667 (18)0.0367 (4)
H150.18280.11840.75810.044*
O160.13334 (18)0.01119 (16)0.61244 (13)0.0421 (4)
C170.0041 (2)0.00089 (19)0.67835 (18)0.0347 (4)
C180.0392 (2)0.1364 (2)0.7104 (2)0.0379 (4)
N190.0698 (2)0.2443 (2)0.7373 (3)0.0590 (6)
C200.1344 (3)0.1243 (2)0.6298 (2)0.0429 (5)
O210.1073 (3)0.23961 (17)0.6035 (2)0.0796 (7)
O220.27917 (19)0.08591 (15)0.62274 (14)0.0423 (4)
C230.4215 (3)0.1992 (3)0.5871 (3)0.0537 (6)
H23A0.40890.2750.5160.064*
H23B0.42480.23530.66550.064*
C240.5687 (4)0.1501 (3)0.5431 (4)0.0786 (10)
H24A0.57580.070.61080.118*
H24B0.66430.22220.52720.118*
H24C0.56970.12330.46020.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0300 (2)0.0350 (3)0.0367 (3)0.00048 (17)0.00372 (17)0.00336 (18)
C10.0245 (8)0.0253 (8)0.0276 (8)0.0055 (6)0.0001 (6)0.0016 (6)
N20.0247 (7)0.0284 (7)0.0248 (7)0.0059 (6)0.0002 (5)0.0013 (6)
C30.0245 (8)0.0254 (8)0.0274 (8)0.0075 (6)0.0008 (6)0.0018 (6)
C40.0277 (8)0.0294 (9)0.0292 (9)0.0059 (7)0.0003 (7)0.0009 (7)
O50.0337 (7)0.0392 (7)0.0265 (7)0.0048 (6)0.0059 (5)0.0005 (5)
C60.0442 (12)0.0547 (13)0.0318 (11)0.0119 (10)0.0056 (8)0.0069 (9)
C70.0311 (9)0.0294 (9)0.0416 (11)0.0026 (7)0.0007 (8)0.0012 (8)
C80.0392 (10)0.0312 (9)0.0458 (11)0.0059 (8)0.0114 (9)0.0098 (8)
C90.0392 (10)0.0316 (9)0.0350 (10)0.0110 (8)0.0096 (8)0.0087 (8)
O100.0538 (9)0.0443 (8)0.0356 (8)0.0093 (7)0.0116 (6)0.0144 (6)
C110.0678 (15)0.0415 (12)0.0497 (13)0.0123 (11)0.0237 (11)0.0188 (10)
C120.0309 (9)0.0293 (9)0.0290 (9)0.0109 (7)0.0032 (7)0.0040 (7)
C130.0379 (10)0.0318 (9)0.0235 (8)0.0124 (7)0.0005 (7)0.0033 (7)
C140.0308 (9)0.0287 (8)0.0252 (8)0.0093 (7)0.0029 (7)0.0004 (7)
C150.0411 (10)0.0302 (9)0.0272 (9)0.0067 (8)0.0045 (7)0.0016 (7)
O160.0419 (8)0.0488 (8)0.0239 (7)0.0100 (6)0.0022 (5)0.0037 (6)
C170.0367 (10)0.0301 (9)0.0269 (9)0.0031 (7)0.0036 (7)0.0003 (7)
C180.0265 (9)0.0329 (10)0.0426 (11)0.0005 (7)0.0027 (7)0.0008 (8)
N190.0366 (10)0.0347 (10)0.0865 (16)0.0036 (8)0.0016 (10)0.0033 (10)
C200.0435 (11)0.0354 (10)0.0332 (10)0.0011 (8)0.0092 (8)0.0004 (8)
O210.0689 (12)0.0308 (9)0.1015 (17)0.0017 (8)0.0163 (11)0.0143 (9)
O220.0436 (8)0.0386 (8)0.0362 (7)0.0092 (6)0.0032 (6)0.0081 (6)
C230.0507 (13)0.0498 (13)0.0491 (13)0.0164 (10)0.0050 (10)0.0094 (10)
C240.0601 (17)0.0529 (16)0.126 (3)0.0022 (13)0.0284 (18)0.0286 (18)
Geometric parameters (Å, º) top
Cl1—C11.7514 (19)C11—H11C0.98
C1—N21.302 (2)C12—C131.412 (3)
C1—C141.418 (2)C13—C141.366 (3)
N2—C31.370 (2)C13—H130.95
C3—C121.422 (2)C14—C151.492 (2)
C3—C41.429 (2)C15—O161.430 (2)
C4—O51.365 (2)C15—C171.505 (3)
C4—C71.372 (3)C15—H151
O5—C61.431 (2)O16—C171.429 (3)
C6—H6A0.98C17—C181.461 (3)
C6—H6B0.98C17—C201.516 (3)
C6—H6C0.98C18—N191.139 (3)
C7—C81.417 (3)C20—O211.197 (3)
C7—H70.95C20—O221.302 (3)
C8—C91.367 (3)O22—C231.478 (3)
C8—H80.95C23—C241.393 (4)
C9—O101.371 (2)C23—H23A0.99
C9—C121.425 (3)C23—H23B0.99
O10—C111.430 (3)C24—H24A0.98
C11—H11A0.98C24—H24B0.98
C11—H11B0.98C24—H24C0.98
N2—C1—C14125.66 (17)C14—C13—C12120.43 (17)
N2—C1—Cl1116.16 (14)C14—C13—H13119.8
C14—C1—Cl1118.18 (13)C12—C13—H13119.8
C1—N2—C3117.43 (15)C13—C14—C1116.95 (16)
N2—C3—C12122.01 (15)C13—C14—C15122.41 (17)
N2—C3—C4118.49 (16)C1—C14—C15120.56 (17)
C12—C3—C4119.50 (17)O16—C15—C14116.67 (17)
O5—C4—C7125.88 (16)O16—C15—C1758.19 (12)
O5—C4—C3115.19 (16)C14—C15—C17122.08 (16)
C7—C4—C3118.92 (17)O16—C15—H15115.8
C4—O5—C6115.66 (16)C14—C15—H15115.8
O5—C6—H6A109.5C17—C15—H15115.8
O5—C6—H6B109.5C17—O16—C1563.54 (12)
H6A—C6—H6B109.5O16—C17—C18114.72 (17)
O5—C6—H6C109.5O16—C17—C1558.27 (12)
H6A—C6—H6C109.5C18—C17—C15118.78 (16)
H6B—C6—H6C109.5O16—C17—C20114.39 (16)
C4—C7—C8121.65 (18)C18—C17—C20118.84 (17)
C4—C7—H7119.2C15—C17—C20117.05 (17)
C8—C7—H7119.2N19—C18—C17178.6 (2)
C9—C8—C7120.54 (19)O21—C20—O22127.0 (2)
C9—C8—H8119.7O21—C20—C17122.2 (2)
C7—C8—H8119.7O22—C20—C17110.79 (17)
C8—C9—O10125.59 (18)C20—O22—C23115.01 (18)
C8—C9—C12119.68 (18)C24—C23—O22109.0 (2)
O10—C9—C12114.73 (17)C24—C23—H23A109.9
C9—O10—C11116.36 (18)O22—C23—H23A109.9
O10—C11—H11A109.5C24—C23—H23B109.9
O10—C11—H11B109.5O22—C23—H23B109.9
H11A—C11—H11B109.5H23A—C23—H23B108.3
O10—C11—H11C109.5C23—C24—H24A109.5
H11A—C11—H11C109.5C23—C24—H24B109.5
H11B—C11—H11C109.5H24A—C24—H24B109.5
C13—C12—C3117.46 (17)C23—C24—H24C109.5
C13—C12—C9122.83 (17)H24A—C24—H24C109.5
C3—C12—C9119.69 (17)H24B—C24—H24C109.5
C14—C1—N2—C30.1 (3)C12—C13—C14—C11.7 (3)
Cl1—C1—N2—C3179.64 (12)C12—C13—C14—C15175.11 (16)
C1—N2—C3—C121.9 (2)N2—C1—C14—C131.9 (3)
C1—N2—C3—C4177.41 (15)Cl1—C1—C14—C13177.79 (13)
N2—C3—C4—O50.2 (2)N2—C1—C14—C15174.96 (17)
C12—C3—C4—O5179.61 (15)Cl1—C1—C14—C155.3 (2)
N2—C3—C4—C7179.25 (16)C13—C14—C15—O169.4 (3)
C12—C3—C4—C70.1 (3)C1—C14—C15—O16173.87 (16)
C7—C4—O5—C64.2 (3)C13—C14—C15—C1777.0 (3)
C3—C4—O5—C6176.33 (17)C1—C14—C15—C17106.3 (2)
O5—C4—C7—C8179.77 (17)C14—C15—O16—C17112.82 (19)
C3—C4—C7—C80.8 (3)C15—O16—C17—C18109.79 (18)
C4—C7—C8—C90.1 (3)C15—O16—C17—C20107.86 (18)
C7—C8—C9—O10178.50 (18)C14—C15—C17—O16103.6 (2)
C7—C8—C9—C121.3 (3)O16—C15—C17—C18102.8 (2)
C8—C9—O10—C110.2 (3)C14—C15—C17—C180.8 (3)
C12—C9—O10—C11179.96 (17)O16—C15—C17—C20103.26 (19)
N2—C3—C12—C132.0 (2)C14—C15—C17—C20153.18 (19)
C4—C3—C12—C13177.30 (15)O16—C17—C20—O2140.3 (3)
N2—C3—C12—C9179.44 (15)C18—C17—C20—O21179.0 (2)
C4—C3—C12—C91.2 (3)C15—C17—C20—O2125.1 (3)
C8—C9—C12—C13176.53 (17)O16—C17—C20—O22140.08 (17)
O10—C9—C12—C133.7 (3)C18—C17—C20—O220.6 (3)
C8—C9—C12—C31.9 (3)C15—C17—C20—O22154.55 (18)
O10—C9—C12—C3177.88 (15)O21—C20—O22—C234.5 (4)
C3—C12—C13—C140.1 (3)C17—C20—O22—C23175.12 (17)
C9—C12—C13—C14178.57 (16)C20—O22—C23—C24161.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N19i0.952.573.434 (3)151
C24—H24A···O16ii0.982.573.152 (4)118
C13—H13···O160.952.542.875 (2)101
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H15ClN2O5
Mr362.76
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.3784 (3), 10.1071 (4), 10.7027 (4)
α, β, γ (°)102.489 (2), 103.977 (2), 96.026 (2)
V3)846.77 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.28 × 0.21 × 0.12
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.842, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
12867, 3803, 3369
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 1.02
No. of reflections3803
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N19i0.952.573.434 (3)151
C24—H24A···O16ii0.982.573.152 (4)118
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z.
 

Acknowledgements

We are grateful to all personal of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance.

References

First citationAmmadi, F., Boukhris, S., Souizi, A. & Coudert, G. (1999). Tetrahedron Lett. 40, 6517–6518.  CrossRef CAS Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBino, A. (1980). J. Am. Chem. Soc. 102, 1990–1991.  Google Scholar
First citationBoukhris, S., Souizi, A. & Robert, A. (1996). Tetrahedron Lett. 37, 4693–4696.  CrossRef CAS Google Scholar
First citationBouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCross, A. D. (1960). Q. Rev. Chem. Soc. 14, 317–335.  CrossRef CAS Google Scholar
First citationCunico, W., Cechinel, C., Bonacorso, H., Martins, M., Zannata, N., de Souza, N., Freitas, I., Soares, R. & Krettli, A. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDas, B., Reedy, V. S., Krishnaiah, M. & Rao, Y. K. (2007). J. Mol. Catal. A Chem. 270, 89–92.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). Eur. J. Med. Chem. 44, 954–958.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHanson, R. M. (1991). Chem. Rev. 91, 437–475.  CrossRef CAS Google Scholar
First citationHong, M., Cai, C. & Yi, W. B. (2010). J. Fluorine Chem. 131, 111–114.  CrossRef CAS Google Scholar
First citationKansagra, B. P., Bhatt, H. H. & Parikh, A. R. (2000). Indian J. Heterocycl. Chem. 10, 5–8.  CAS Google Scholar
First citationKumar, S. R. & Leelavathi, P. (2007). J. Mol. Catal. A Chem. 266, 65–68.  CAS Google Scholar
First citationKumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. (2008). Tetrahedron, 64, 536–542.  Web of Science CSD CrossRef CAS Google Scholar
First citationLadraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahamoud, A., Chevalier, J., Davin-Regli, A., Baebe, J. & Pages, J. M. (2006). Curr. Drug Targets, 7, 843–847.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarco-Contelles, J., Molina, M. T. & Anjum, S. (2004). Chem. Rev. 6, 2857–2900.  Google Scholar
First citationPearson, A. J. & Ong, C. W. (1981). J. Am. Chem. Soc. 103, 6686–6690.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasquez, M. T., Romero, M. & Pujol, M. D. (2004). Bioorg. Med. Chem. 12, 949–956.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1754-o1755
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds