organic compounds
Ethyl 3-(2-chloro-5,8-dimethoxyquinolin-3-yl)-2-cyanooxirane-2-carboxylate
aLaboratoire des Produits Naturels d'Origine, Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The title molecule, C17H15ClN2O5, contains a quinolyl unit linked to a functionalized oxirane system with a 2,3-trans arrangement of the substituents (ester group versus quinolyl). The structure can be described as being built up from zigzag layers parallel to (10). The heterocyclic ring of the quinolyl unit forms a dihedral angle of 60.05 (1)° with the oxirane plane. The crystal packing is stabilized by intermolecular C—H⋯O and C—H⋯N hydrogen bonding, resulting in the formation of an infinite three-dimensional network and reinforcing the cohesion between the layers.
Related literature
For applications of quinoline derivatives, see: Kansagra et al. (2000); Vasquez et al. (2004); Guo et al. (2009) Cunico et al. (2006); Mahamoud et al. (2006); Kumar et al. (2008); Hong et al. (2010). For the biological activity of naturally occurring oxiranes, see: Bino (1980); Cross (1960); Marco-Contelles et al. (2004); Pearson & Ong (1981). For applications of oxiranes, see: Hanson (1991); Kumar & Leelavathi (2007); Das et al. (2007); Boukhris et al. (1996); Ammadi et al., (1999). For our previous work on the preparation of quinoline derivatives, see: Bouraiou et al. (2008); Benzerka et al. (2008); Ladraa et al. (2010). For weak hydrogen bonds, see: Desiraju & Steiner, (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811023336/zj2015sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811023336/zj2015Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811023336/zj2015Isup3.cml
The title compound was obtained by oxidation of (E)-ethyl-3-(2-chloro-5,8-dimethoxyquinolin-3-yl)-2-cyanoacrylate with 2,5 equivalents of m-chloroperoxybenzoic acid in dichloromethane at room temperature in the presence of 1,2 equivalents of potassium carbonate.
(silica gel, eluant: CH2Cl2) of the residue afforded pure product as yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane / methanol solution.All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H15ClN2O5 | Z = 2 |
Mr = 362.76 | F(000) = 376 |
Triclinic, P1 | Dx = 1.423 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3784 (3) Å | Cell parameters from 7904 reflections |
b = 10.1071 (4) Å | θ = 2.5–27.5° |
c = 10.7027 (4) Å | µ = 0.26 mm−1 |
α = 102.489 (2)° | T = 150 K |
β = 103.977 (2)° | Block, colourless |
γ = 96.026 (2)° | 0.28 × 0.21 × 0.12 mm |
V = 846.77 (6) Å3 |
Bruker APEXII diffractometer | 3369 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −10→10 |
Tmin = 0.842, Tmax = 0.970 | k = −13→13 |
12867 measured reflections | l = −13→10 |
3803 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5515P] where P = (Fo2 + 2Fc2)/3 |
3803 reflections | (Δ/σ)max = 0.006 |
229 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C17H15ClN2O5 | γ = 96.026 (2)° |
Mr = 362.76 | V = 846.77 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.3784 (3) Å | Mo Kα radiation |
b = 10.1071 (4) Å | µ = 0.26 mm−1 |
c = 10.7027 (4) Å | T = 150 K |
α = 102.489 (2)° | 0.28 × 0.21 × 0.12 mm |
β = 103.977 (2)° |
Bruker APEXII diffractometer | 3803 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3369 reflections with I > 2σ(I) |
Tmin = 0.842, Tmax = 0.970 | Rint = 0.020 |
12867 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.54 e Å−3 |
3803 reflections | Δρmin = −0.42 e Å−3 |
229 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.21857 (5) | −0.03042 (5) | 1.03331 (5) | 0.03620 (16) | |
C1 | 0.3363 (2) | 0.09251 (17) | 0.98421 (17) | 0.0277 (4) | |
N2 | 0.45074 (18) | 0.18016 (15) | 1.07892 (14) | 0.0279 (3) | |
C3 | 0.5441 (2) | 0.27800 (17) | 1.04347 (17) | 0.0274 (4) | |
C4 | 0.6751 (2) | 0.37174 (18) | 1.14484 (18) | 0.0312 (4) | |
O5 | 0.69369 (17) | 0.35382 (14) | 1.27008 (13) | 0.0379 (3) | |
C6 | 0.8178 (3) | 0.4523 (3) | 1.3736 (2) | 0.0508 (6) | |
H6A | 0.9272 | 0.448 | 1.3567 | 0.076* | |
H6B | 0.8202 | 0.4318 | 1.4593 | 0.076* | |
H6C | 0.7909 | 0.5447 | 1.3756 | 0.076* | |
C7 | 0.7706 (2) | 0.4691 (2) | 1.1101 (2) | 0.0371 (4) | |
H7 | 0.8587 | 0.5309 | 1.177 | 0.045* | |
C8 | 0.7410 (3) | 0.4798 (2) | 0.9768 (2) | 0.0387 (4) | |
H8 | 0.8091 | 0.5483 | 0.9558 | 0.046* | |
C9 | 0.6153 (2) | 0.3923 (2) | 0.8783 (2) | 0.0349 (4) | |
O10 | 0.5731 (2) | 0.39496 (16) | 0.74704 (15) | 0.0439 (4) | |
C11 | 0.6705 (3) | 0.4986 (2) | 0.7119 (2) | 0.0502 (6) | |
H11A | 0.6632 | 0.5894 | 0.7635 | 0.075* | |
H11B | 0.628 | 0.4926 | 0.6168 | 0.075* | |
H11C | 0.7871 | 0.4848 | 0.7313 | 0.075* | |
C12 | 0.5154 (2) | 0.28768 (18) | 0.90951 (18) | 0.0307 (4) | |
C13 | 0.3894 (2) | 0.18913 (19) | 0.81199 (18) | 0.0326 (4) | |
H13 | 0.3669 | 0.1923 | 0.7214 | 0.039* | |
C14 | 0.2996 (2) | 0.08919 (18) | 0.84700 (17) | 0.0309 (4) | |
C15 | 0.1747 (3) | −0.0235 (2) | 0.74667 (18) | 0.0367 (4) | |
H15 | 0.1828 | −0.1184 | 0.7581 | 0.044* | |
O16 | 0.13334 (18) | −0.01119 (16) | 0.61244 (13) | 0.0421 (4) | |
C17 | 0.0041 (2) | −0.00089 (19) | 0.67835 (18) | 0.0347 (4) | |
C18 | −0.0392 (2) | 0.1364 (2) | 0.7104 (2) | 0.0379 (4) | |
N19 | −0.0698 (2) | 0.2443 (2) | 0.7373 (3) | 0.0590 (6) | |
C20 | −0.1344 (3) | −0.1243 (2) | 0.6298 (2) | 0.0429 (5) | |
O21 | −0.1073 (3) | −0.23961 (17) | 0.6035 (2) | 0.0796 (7) | |
O22 | −0.27917 (19) | −0.08591 (15) | 0.62274 (14) | 0.0423 (4) | |
C23 | −0.4215 (3) | −0.1992 (3) | 0.5871 (3) | 0.0537 (6) | |
H23A | −0.4089 | −0.275 | 0.516 | 0.064* | |
H23B | −0.4248 | −0.2353 | 0.6655 | 0.064* | |
C24 | −0.5687 (4) | −0.1501 (3) | 0.5431 (4) | 0.0786 (10) | |
H24A | −0.5758 | −0.07 | 0.6108 | 0.118* | |
H24B | −0.6643 | −0.2222 | 0.5272 | 0.118* | |
H24C | −0.5697 | −0.1233 | 0.4602 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0300 (2) | 0.0350 (3) | 0.0367 (3) | −0.00048 (17) | 0.00372 (17) | 0.00336 (18) |
C1 | 0.0245 (8) | 0.0253 (8) | 0.0276 (8) | 0.0055 (6) | 0.0001 (6) | 0.0016 (6) |
N2 | 0.0247 (7) | 0.0284 (7) | 0.0248 (7) | 0.0059 (6) | −0.0002 (5) | 0.0013 (6) |
C3 | 0.0245 (8) | 0.0254 (8) | 0.0274 (8) | 0.0075 (6) | 0.0008 (6) | 0.0018 (6) |
C4 | 0.0277 (8) | 0.0294 (9) | 0.0292 (9) | 0.0059 (7) | −0.0003 (7) | 0.0009 (7) |
O5 | 0.0337 (7) | 0.0392 (7) | 0.0265 (7) | −0.0048 (6) | −0.0059 (5) | −0.0005 (5) |
C6 | 0.0442 (12) | 0.0547 (13) | 0.0318 (11) | −0.0119 (10) | −0.0056 (8) | −0.0069 (9) |
C7 | 0.0311 (9) | 0.0294 (9) | 0.0416 (11) | 0.0026 (7) | 0.0007 (8) | 0.0012 (8) |
C8 | 0.0392 (10) | 0.0312 (9) | 0.0458 (11) | 0.0059 (8) | 0.0114 (9) | 0.0098 (8) |
C9 | 0.0392 (10) | 0.0316 (9) | 0.0350 (10) | 0.0110 (8) | 0.0096 (8) | 0.0087 (8) |
O10 | 0.0538 (9) | 0.0443 (8) | 0.0356 (8) | 0.0093 (7) | 0.0116 (6) | 0.0144 (6) |
C11 | 0.0678 (15) | 0.0415 (12) | 0.0497 (13) | 0.0123 (11) | 0.0237 (11) | 0.0188 (10) |
C12 | 0.0309 (9) | 0.0293 (9) | 0.0290 (9) | 0.0109 (7) | 0.0032 (7) | 0.0040 (7) |
C13 | 0.0379 (10) | 0.0318 (9) | 0.0235 (8) | 0.0124 (7) | 0.0005 (7) | 0.0033 (7) |
C14 | 0.0308 (9) | 0.0287 (8) | 0.0252 (8) | 0.0093 (7) | −0.0029 (7) | −0.0004 (7) |
C15 | 0.0411 (10) | 0.0302 (9) | 0.0272 (9) | 0.0067 (8) | −0.0045 (7) | −0.0016 (7) |
O16 | 0.0419 (8) | 0.0488 (8) | 0.0239 (7) | 0.0100 (6) | −0.0022 (5) | −0.0037 (6) |
C17 | 0.0367 (10) | 0.0301 (9) | 0.0269 (9) | 0.0031 (7) | −0.0036 (7) | 0.0003 (7) |
C18 | 0.0265 (9) | 0.0329 (10) | 0.0426 (11) | −0.0005 (7) | −0.0027 (7) | 0.0008 (8) |
N19 | 0.0366 (10) | 0.0347 (10) | 0.0865 (16) | 0.0036 (8) | −0.0016 (10) | −0.0033 (10) |
C20 | 0.0435 (11) | 0.0354 (10) | 0.0332 (10) | −0.0011 (8) | −0.0092 (8) | −0.0004 (8) |
O21 | 0.0689 (12) | 0.0308 (9) | 0.1015 (17) | 0.0017 (8) | −0.0163 (11) | −0.0143 (9) |
O22 | 0.0436 (8) | 0.0386 (8) | 0.0362 (7) | −0.0092 (6) | 0.0032 (6) | 0.0081 (6) |
C23 | 0.0507 (13) | 0.0498 (13) | 0.0491 (13) | −0.0164 (10) | 0.0050 (10) | 0.0094 (10) |
C24 | 0.0601 (17) | 0.0529 (16) | 0.126 (3) | 0.0022 (13) | 0.0284 (18) | 0.0286 (18) |
Cl1—C1 | 1.7514 (19) | C11—H11C | 0.98 |
C1—N2 | 1.302 (2) | C12—C13 | 1.412 (3) |
C1—C14 | 1.418 (2) | C13—C14 | 1.366 (3) |
N2—C3 | 1.370 (2) | C13—H13 | 0.95 |
C3—C12 | 1.422 (2) | C14—C15 | 1.492 (2) |
C3—C4 | 1.429 (2) | C15—O16 | 1.430 (2) |
C4—O5 | 1.365 (2) | C15—C17 | 1.505 (3) |
C4—C7 | 1.372 (3) | C15—H15 | 1 |
O5—C6 | 1.431 (2) | O16—C17 | 1.429 (3) |
C6—H6A | 0.98 | C17—C18 | 1.461 (3) |
C6—H6B | 0.98 | C17—C20 | 1.516 (3) |
C6—H6C | 0.98 | C18—N19 | 1.139 (3) |
C7—C8 | 1.417 (3) | C20—O21 | 1.197 (3) |
C7—H7 | 0.95 | C20—O22 | 1.302 (3) |
C8—C9 | 1.367 (3) | O22—C23 | 1.478 (3) |
C8—H8 | 0.95 | C23—C24 | 1.393 (4) |
C9—O10 | 1.371 (2) | C23—H23A | 0.99 |
C9—C12 | 1.425 (3) | C23—H23B | 0.99 |
O10—C11 | 1.430 (3) | C24—H24A | 0.98 |
C11—H11A | 0.98 | C24—H24B | 0.98 |
C11—H11B | 0.98 | C24—H24C | 0.98 |
N2—C1—C14 | 125.66 (17) | C14—C13—C12 | 120.43 (17) |
N2—C1—Cl1 | 116.16 (14) | C14—C13—H13 | 119.8 |
C14—C1—Cl1 | 118.18 (13) | C12—C13—H13 | 119.8 |
C1—N2—C3 | 117.43 (15) | C13—C14—C1 | 116.95 (16) |
N2—C3—C12 | 122.01 (15) | C13—C14—C15 | 122.41 (17) |
N2—C3—C4 | 118.49 (16) | C1—C14—C15 | 120.56 (17) |
C12—C3—C4 | 119.50 (17) | O16—C15—C14 | 116.67 (17) |
O5—C4—C7 | 125.88 (16) | O16—C15—C17 | 58.19 (12) |
O5—C4—C3 | 115.19 (16) | C14—C15—C17 | 122.08 (16) |
C7—C4—C3 | 118.92 (17) | O16—C15—H15 | 115.8 |
C4—O5—C6 | 115.66 (16) | C14—C15—H15 | 115.8 |
O5—C6—H6A | 109.5 | C17—C15—H15 | 115.8 |
O5—C6—H6B | 109.5 | C17—O16—C15 | 63.54 (12) |
H6A—C6—H6B | 109.5 | O16—C17—C18 | 114.72 (17) |
O5—C6—H6C | 109.5 | O16—C17—C15 | 58.27 (12) |
H6A—C6—H6C | 109.5 | C18—C17—C15 | 118.78 (16) |
H6B—C6—H6C | 109.5 | O16—C17—C20 | 114.39 (16) |
C4—C7—C8 | 121.65 (18) | C18—C17—C20 | 118.84 (17) |
C4—C7—H7 | 119.2 | C15—C17—C20 | 117.05 (17) |
C8—C7—H7 | 119.2 | N19—C18—C17 | 178.6 (2) |
C9—C8—C7 | 120.54 (19) | O21—C20—O22 | 127.0 (2) |
C9—C8—H8 | 119.7 | O21—C20—C17 | 122.2 (2) |
C7—C8—H8 | 119.7 | O22—C20—C17 | 110.79 (17) |
C8—C9—O10 | 125.59 (18) | C20—O22—C23 | 115.01 (18) |
C8—C9—C12 | 119.68 (18) | C24—C23—O22 | 109.0 (2) |
O10—C9—C12 | 114.73 (17) | C24—C23—H23A | 109.9 |
C9—O10—C11 | 116.36 (18) | O22—C23—H23A | 109.9 |
O10—C11—H11A | 109.5 | C24—C23—H23B | 109.9 |
O10—C11—H11B | 109.5 | O22—C23—H23B | 109.9 |
H11A—C11—H11B | 109.5 | H23A—C23—H23B | 108.3 |
O10—C11—H11C | 109.5 | C23—C24—H24A | 109.5 |
H11A—C11—H11C | 109.5 | C23—C24—H24B | 109.5 |
H11B—C11—H11C | 109.5 | H24A—C24—H24B | 109.5 |
C13—C12—C3 | 117.46 (17) | C23—C24—H24C | 109.5 |
C13—C12—C9 | 122.83 (17) | H24A—C24—H24C | 109.5 |
C3—C12—C9 | 119.69 (17) | H24B—C24—H24C | 109.5 |
C14—C1—N2—C3 | 0.1 (3) | C12—C13—C14—C1 | 1.7 (3) |
Cl1—C1—N2—C3 | −179.64 (12) | C12—C13—C14—C15 | −175.11 (16) |
C1—N2—C3—C12 | 1.9 (2) | N2—C1—C14—C13 | −1.9 (3) |
C1—N2—C3—C4 | −177.41 (15) | Cl1—C1—C14—C13 | 177.79 (13) |
N2—C3—C4—O5 | −0.2 (2) | N2—C1—C14—C15 | 174.96 (17) |
C12—C3—C4—O5 | −179.61 (15) | Cl1—C1—C14—C15 | −5.3 (2) |
N2—C3—C4—C7 | 179.25 (16) | C13—C14—C15—O16 | −9.4 (3) |
C12—C3—C4—C7 | −0.1 (3) | C1—C14—C15—O16 | 173.87 (16) |
C7—C4—O5—C6 | 4.2 (3) | C13—C14—C15—C17 | −77.0 (3) |
C3—C4—O5—C6 | −176.33 (17) | C1—C14—C15—C17 | 106.3 (2) |
O5—C4—C7—C8 | −179.77 (17) | C14—C15—O16—C17 | −112.82 (19) |
C3—C4—C7—C8 | 0.8 (3) | C15—O16—C17—C18 | 109.79 (18) |
C4—C7—C8—C9 | −0.1 (3) | C15—O16—C17—C20 | −107.86 (18) |
C7—C8—C9—O10 | 178.50 (18) | C14—C15—C17—O16 | 103.6 (2) |
C7—C8—C9—C12 | −1.3 (3) | O16—C15—C17—C18 | −102.8 (2) |
C8—C9—O10—C11 | 0.2 (3) | C14—C15—C17—C18 | 0.8 (3) |
C12—C9—O10—C11 | 179.96 (17) | O16—C15—C17—C20 | 103.26 (19) |
N2—C3—C12—C13 | −2.0 (2) | C14—C15—C17—C20 | −153.18 (19) |
C4—C3—C12—C13 | 177.30 (15) | O16—C17—C20—O21 | 40.3 (3) |
N2—C3—C12—C9 | 179.44 (15) | C18—C17—C20—O21 | −179.0 (2) |
C4—C3—C12—C9 | −1.2 (3) | C15—C17—C20—O21 | −25.1 (3) |
C8—C9—C12—C13 | −176.53 (17) | O16—C17—C20—O22 | −140.08 (17) |
O10—C9—C12—C13 | 3.7 (3) | C18—C17—C20—O22 | 0.6 (3) |
C8—C9—C12—C3 | 1.9 (3) | C15—C17—C20—O22 | 154.55 (18) |
O10—C9—C12—C3 | −177.88 (15) | O21—C20—O22—C23 | 4.5 (4) |
C3—C12—C13—C14 | 0.1 (3) | C17—C20—O22—C23 | −175.12 (17) |
C9—C12—C13—C14 | 178.57 (16) | C20—O22—C23—C24 | −161.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N19i | 0.95 | 2.57 | 3.434 (3) | 151 |
C24—H24A···O16ii | 0.98 | 2.57 | 3.152 (4) | 118 |
C13—H13···O16 | 0.95 | 2.54 | 2.875 (2) | 101 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H15ClN2O5 |
Mr | 362.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 8.3784 (3), 10.1071 (4), 10.7027 (4) |
α, β, γ (°) | 102.489 (2), 103.977 (2), 96.026 (2) |
V (Å3) | 846.77 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.28 × 0.21 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.842, 0.970 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12867, 3803, 3369 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.141, 1.02 |
No. of reflections | 3803 |
No. of parameters | 229 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.42 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N19i | 0.95 | 2.57 | 3.434 (3) | 151 |
C24—H24A···O16ii | 0.98 | 2.57 | 3.152 (4) | 118 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y, z. |
Acknowledgements
We are grateful to all personal of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance.
References
Ammadi, F., Boukhris, S., Souizi, A. & Coudert, G. (1999). Tetrahedron Lett. 40, 6517–6518. CrossRef CAS Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bino, A. (1980). J. Am. Chem. Soc. 102, 1990–1991. Google Scholar
Boukhris, S., Souizi, A. & Robert, A. (1996). Tetrahedron Lett. 37, 4693–4696. CrossRef CAS Google Scholar
Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333. CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cross, A. D. (1960). Q. Rev. Chem. Soc. 14, 317–335. CrossRef CAS Google Scholar
Cunico, W., Cechinel, C., Bonacorso, H., Martins, M., Zannata, N., de Souza, N., Freitas, I., Soares, R. & Krettli, A. (2006). Bioorg. Med. Chem. Lett. 16, 649–653. Web of Science CrossRef PubMed CAS Google Scholar
Das, B., Reedy, V. S., Krishnaiah, M. & Rao, Y. K. (2007). J. Mol. Catal. A Chem. 270, 89–92. CrossRef CAS Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Guo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). Eur. J. Med. Chem. 44, 954–958. Web of Science CrossRef PubMed CAS Google Scholar
Hanson, R. M. (1991). Chem. Rev. 91, 437–475. CrossRef CAS Google Scholar
Hong, M., Cai, C. & Yi, W. B. (2010). J. Fluorine Chem. 131, 111–114. CrossRef CAS Google Scholar
Kansagra, B. P., Bhatt, H. H. & Parikh, A. R. (2000). Indian J. Heterocycl. Chem. 10, 5–8. CAS Google Scholar
Kumar, S. R. & Leelavathi, P. (2007). J. Mol. Catal. A Chem. 266, 65–68. CAS Google Scholar
Kumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. (2008). Tetrahedron, 64, 536–542. Web of Science CSD CrossRef CAS Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahamoud, A., Chevalier, J., Davin-Regli, A., Baebe, J. & Pages, J. M. (2006). Curr. Drug Targets, 7, 843–847. Web of Science CrossRef PubMed CAS Google Scholar
Marco-Contelles, J., Molina, M. T. & Anjum, S. (2004). Chem. Rev. 6, 2857–2900. Google Scholar
Pearson, A. J. & Ong, C. W. (1981). J. Am. Chem. Soc. 103, 6686–6690. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vasquez, M. T., Romero, M. & Pujol, M. D. (2004). Bioorg. Med. Chem. 12, 949–956. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due to their presence in a large number of natural products and bioactive compounds and their close association with the biological activities, quinoline and their derivatives have been extensively investigated by organic and biological chemists (Kansagra et al., 2000; Vasquez et al., 2004; Guo et al., 2009). They are used in production of anti-malarial, antibiotics, anti-hypertension, anti-diabetic and so many other drugs (Cunico et al., 2006; Mahamoud et al., 2006; Kumar et al. 2008; Hong et al. 2010).
Oxiranes are important intermediates and starting materials which have found much use in synthetic organic chemistry owing to their ease of formation and ready activity toward nucleophiles (Hanson et al., 1991; Kumar et al., 2007; Das et al. 2007). In addition, natural occurring oxiranes are associated with various biological activities (Cross, 1960; Bino, 1980; Pearson et al., 1981; Marco-Contelles et al., 2004). 2-cyano-2-alkoxycarbonyloxiranes proved to be versatile reagents from which a large variety of compounds might be synthesized (Boukhris et al., 1996; Ammadi et al., 1999). In connection with our research program aimed at the synthesis and the biological evaluation of quinoline derivatives (Bouraiou et al., 2008; Benzerka et al., 2008; Ladraa et al., 2010), we report in this paper the synthesis and the structure determination by X-ray of a new quinoline compound where quinolyl moiety is linked to functionalized oxirane system. The reactivity of this compound and its analogues toward nucleophiles is under investigation.
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1.
In the asymmetric unit of title compound the oxiranes unit bearing an ester and cyano groups at C3 and quinolyl moiety at C2.
The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 2.43 (5)°. The heterocycle ring of quinolyl unit form also with oxirane plane a dihedral angle of 60.05 (1)°.
The crystal packing can be described as layers in zig zag parallel to (1–10) plane (Fig. 2). A weak hydrogen bond interactions (C—H···N=3.434 (3) Å)along the [110] directions ensure the stability in the same layer. (as reported by Desiraju & Steiner, 1999) These layers are linked together by a classical weak C—H···O interactions and π-π stacking The crystal packing is stabilized by intra and intermolecular hydrogen bond (C—H···N and C—H···O) and π-π stacking, resulting in the formation of infinite three-dimensional network linked these layers toghter and reinforcing a cohesion of structure (Fig. 3). Hydrogen-bonding parameters are listed in table 1.