organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Amino-3,5-di­chloro­phen­yl)ethanol

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: pengliu@fmmu.edu.cn

(Received 1 June 2011; accepted 20 June 2011; online 30 June 2011)

The asymmetric unit of the title compound, C8H9Cl2NO, contains two crystallographically independent mol­ecules which are connected via an N—H⋯O hydrogen bond . There is aromatic ππ stacking in the crystal, with a centroid–centroid distance between benzene rings of 3.48 (2)Å. The crystal packing is stabilized by intermolecular hydrogen bonds.

Related literature

For the synthetic use of the title compound and related compounds, see: Judkins et al. (1991[Judkins, B. D., Evans, B. & Meadows, J. D. (1991). Eur. Patent Appl. 460924. ]); Ehrhardt (1990[Ehrhardt, J. D. (1990). J. Labelled Compd Rad. 28, 725-729.]); Kelser (2007[Kelser, D. R. (2007). PCT Int. Appl. 2007003896.]); Lu (2001[Lu, S. R. (2001). Hecheng Huaxue, 9, 86-88.]); Pri-Bar et al. (1990[Pri-Bar, I. & Buchman, O. (1990). J. Labelled Compd Rad. 28, 1393-1400.]); Shukrallah et al. (2004[Shukrallah, N. A., Manfred, B. & de Feaux, L. B. (2004). Ger. Offen. 10248277.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9Cl2NO

  • Mr = 206.06

  • Monoclinic, C 2/c

  • a = 16.472 (2) Å

  • b = 16.110 (2) Å

  • c = 14.6756 (19) Å

  • β = 107.049 (2)°

  • V = 3723.2 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.950

  • 9273 measured reflections

  • 3279 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.128

  • S = 1.06

  • 3279 reflections

  • 277 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H13⋯O2i 0.82 (3) 2.17 (3) 2.927 (3) 154 (3)
O1—H16⋯N1ii 0.83 (3) 2.12 (3) 2.941 (3) 169 (3)
O2—H18⋯N2iii 0.79 (3) 2.13 (3) 2.912 (3) 172 (2)
Symmetry codes: (i) [x+1, -y, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+2; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Comment top

We report here the crystal structure of the title compound 1-(4-amino-3, 5-dichlorophenyl) ethanol (I), a typical secondary aromatic alcohol and an important organic building block (Fig. 1). Bond lengths and angles are within normal ranges. As part of our ongoing studies of the secondary aromatic alcohol, the title compound was synthesized and characterized by X-ray diffraction. The asymmetric unit of the title compound (I) contains two crystallographically independent molecules in which both molecules are connected via N—H···O hydrogen bonds. The dihedral angle between the two benzene rings is 60.49°. The packing of molecules in the crystal structure is stabilized by intermolecular O—H···N hydrogen bonds.

Related literature top

For the synthetic use of the title compound and related compounds, see: Judkins et al. (1991); Ehrhardt (1990); Kelser (2007); Lu (2001); Pri-Bar et al. (1990); Shukrallah et al. (2004).

Experimental top

1-(4-amino-3,5-dichlorophenyl)ethanone (1.03 g,5 mmol) was dissolved in anhydrous methanol(25 ml) at room temperature, followed by addition of NaBH4(0.227 g, 6 mmol). The mixture was stirred vigorously at room temperature until TLC showed no ethanone. The solvent was evaporated to dryness under reduced pressure to obtain a crude product, which was purified by a flash column chromatography (n-hexane/EtOAc 8:1) to afford pure colorless compound in 89.6% yield. Then, the title compound (40 mg,0.19 mmol) was dissolved in ethyl acetate/n-hexane (7:3,15 ml). Colorless crystals were isolated after several days.

Refinement top

In both structures all the H atoms were discernible in the difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl and UisoHaryl are 1.5 U eq(C) and 1.2 U eq (C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at 50% probability level.
1-(4-Amino-3,5-dichlorophenyl)ethanol top
Crystal data top
C8H9Cl2NOF(000) = 1696
Mr = 206.06Dx = 1.470 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.472 (2) ÅCell parameters from 5355 reflections
b = 16.110 (2) Åθ = 2.6–28.3°
c = 14.6756 (19) ŵ = 0.65 mm1
β = 107.049 (2)°T = 296 K
V = 3723.2 (8) Å3Block, colorless
Z = 160.15 × 0.13 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3279 independent reflections
Radiation source: fine-focus sealed tube2855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1915
Tmin = 0.909, Tmax = 0.950k = 1917
9273 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3279 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C8H9Cl2NOV = 3723.2 (8) Å3
Mr = 206.06Z = 16
Monoclinic, C2/cMo Kα radiation
a = 16.472 (2) ŵ = 0.65 mm1
b = 16.110 (2) ÅT = 296 K
c = 14.6756 (19) Å0.15 × 0.13 × 0.08 mm
β = 107.049 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2855 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.950Rint = 0.017
9273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.42 e Å3
3279 reflectionsΔρmin = 0.46 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.10844 (4)0.04952 (4)0.86690 (4)0.0620 (2)
Cl21.09417 (4)0.16958 (4)1.20328 (4)0.0598 (2)
Cl30.70719 (3)0.07065 (4)0.67509 (4)0.0557 (2)
Cl40.44673 (4)0.14455 (3)0.61899 (4)0.0527 (2)
O10.78216 (11)0.06516 (11)0.85101 (13)0.0617 (5)
O20.31701 (9)0.14705 (11)0.48677 (12)0.0519 (4)
N11.18071 (11)0.10254 (12)1.06839 (15)0.0468 (4)
N20.63069 (12)0.09603 (13)0.67790 (13)0.0440 (4)
C11.04879 (13)0.08619 (12)0.93915 (14)0.0416 (5)
C20.96140 (14)0.08983 (14)0.90409 (15)0.0458 (5)
C30.91343 (12)0.11733 (12)0.96181 (14)0.0414 (5)
C40.95554 (13)0.14186 (12)1.05372 (15)0.0408 (5)
C51.04275 (12)0.13832 (12)1.08668 (13)0.0389 (4)
C61.09322 (12)0.11026 (11)1.03173 (13)0.0375 (4)
C70.81676 (14)0.12321 (15)0.92535 (18)0.0517 (5)
C80.78811 (16)0.20783 (16)0.8855 (2)0.0712 (8)
H8A0.72720.20940.86320.107*
H8B0.81060.21930.83340.107*
H8C0.80820.24890.93440.107*
C90.59864 (12)0.05077 (12)0.64539 (13)0.0377 (4)
C100.54210 (12)0.11507 (13)0.61455 (14)0.0388 (4)
C110.45556 (12)0.10121 (12)0.58610 (13)0.0380 (4)
C120.42693 (12)0.02043 (13)0.58929 (14)0.0406 (5)
C130.48443 (12)0.04327 (12)0.62044 (13)0.0366 (4)
C140.57235 (11)0.03095 (12)0.65081 (12)0.0354 (4)
C150.39451 (13)0.17286 (14)0.55311 (16)0.0458 (5)
C160.37270 (17)0.21407 (17)0.6356 (2)0.0578 (6)
H10.3668 (13)0.0092 (11)0.5668 (14)0.035 (5)*
H20.5640 (15)0.1665 (14)0.6168 (17)0.048 (6)*
H30.9238 (15)0.1595 (14)1.0923 (18)0.048 (6)*
H40.4188 (13)0.2126 (14)0.5260 (15)0.045 (6)*
H50.9332 (14)0.0707 (13)0.8489 (16)0.045 (6)*
H60.3307 (18)0.2551 (16)0.612 (2)0.069 (7)*
H80.6703 (16)0.0815 (14)0.7248 (17)0.045 (6)*
H90.3513 (16)0.1676 (16)0.6741 (18)0.058 (7)*
H100.4207 (17)0.2342 (17)0.6731 (19)0.062 (7)*
H110.6117 (18)0.1357 (18)0.6943 (19)0.061 (9)*
H120.7895 (15)0.1125 (15)0.9809 (17)0.051 (6)*
H131.2082 (18)0.1076 (17)1.030 (2)0.062 (8)*
H151.2046 (18)0.1337 (17)1.118 (2)0.062 (8)*
H160.794 (2)0.016 (2)0.867 (2)0.084 (10)*
H180.3276 (19)0.1363 (17)0.4388 (16)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0664 (4)0.0764 (4)0.0496 (4)0.0058 (3)0.0267 (3)0.0065 (3)
Cl20.0441 (3)0.0892 (5)0.0391 (3)0.0033 (3)0.0011 (2)0.0144 (3)
Cl30.0275 (3)0.0586 (4)0.0742 (4)0.0044 (2)0.0044 (2)0.0059 (3)
Cl40.0508 (4)0.0457 (3)0.0588 (4)0.0116 (2)0.0116 (3)0.0049 (2)
O10.0475 (9)0.0491 (10)0.0669 (11)0.0050 (7)0.0171 (8)0.0017 (8)
O20.0332 (8)0.0783 (11)0.0422 (9)0.0106 (7)0.0082 (6)0.0022 (7)
N10.0341 (9)0.0582 (12)0.0472 (11)0.0009 (8)0.0106 (8)0.0004 (9)
N20.0387 (10)0.0460 (10)0.0430 (10)0.0016 (8)0.0053 (8)0.0039 (8)
C10.0448 (11)0.0432 (11)0.0381 (10)0.0021 (9)0.0142 (9)0.0011 (8)
C20.0463 (12)0.0497 (12)0.0345 (11)0.0036 (9)0.0010 (9)0.0027 (9)
C30.0345 (10)0.0410 (10)0.0432 (11)0.0028 (8)0.0027 (8)0.0011 (8)
C40.0359 (11)0.0431 (11)0.0418 (11)0.0021 (8)0.0089 (9)0.0019 (8)
C50.0369 (10)0.0421 (11)0.0333 (10)0.0026 (8)0.0033 (8)0.0008 (8)
C60.0337 (10)0.0377 (10)0.0395 (10)0.0011 (7)0.0082 (8)0.0054 (8)
C70.0368 (11)0.0531 (12)0.0561 (13)0.0047 (9)0.0009 (10)0.0000 (10)
C80.0454 (14)0.0526 (14)0.101 (2)0.0025 (11)0.0017 (13)0.0039 (13)
C90.0269 (9)0.0488 (11)0.0348 (10)0.0023 (8)0.0050 (7)0.0024 (8)
C100.0365 (10)0.0404 (11)0.0379 (10)0.0041 (8)0.0086 (8)0.0008 (8)
C110.0341 (10)0.0448 (11)0.0345 (10)0.0027 (8)0.0094 (8)0.0022 (8)
C120.0282 (10)0.0541 (12)0.0383 (10)0.0026 (8)0.0081 (8)0.0010 (9)
C130.0363 (10)0.0413 (10)0.0323 (9)0.0073 (8)0.0101 (8)0.0007 (8)
C140.0331 (10)0.0432 (10)0.0283 (9)0.0013 (8)0.0068 (7)0.0001 (8)
C150.0352 (11)0.0500 (12)0.0525 (13)0.0036 (9)0.0132 (9)0.0109 (10)
C160.0518 (15)0.0547 (14)0.0610 (15)0.0106 (12)0.0073 (12)0.0077 (12)
Geometric parameters (Å, º) top
Cl1—C11.7463 (19)C4—H30.92 (2)
Cl2—C51.7462 (19)C5—C61.392 (3)
Cl3—C91.7415 (19)C7—C81.504 (3)
Cl4—C131.7437 (19)C7—H121.05 (2)
O1—C71.423 (3)C8—H8A0.9600
O1—H160.84 (3)C8—H8B0.9600
O2—C151.422 (3)C8—H8C0.9600
O2—H180.792 (17)C9—C101.378 (3)
N1—C61.388 (3)C9—C141.395 (3)
N1—H130.82 (3)C10—C111.381 (3)
N1—H150.87 (3)C10—H20.90 (2)
N2—C141.399 (3)C11—C121.390 (3)
N2—H80.83 (3)C11—C151.514 (3)
N2—H110.78 (3)C12—C131.380 (3)
C1—C21.381 (3)C12—H10.96 (2)
C1—C61.396 (3)C13—C141.399 (3)
C2—C31.389 (3)C15—C161.513 (3)
C2—H50.86 (2)C15—H40.91 (2)
C3—C41.381 (3)C16—H60.95 (3)
C3—C71.527 (3)C16—H91.06 (3)
C4—C51.376 (3)C16—H100.88 (3)
C7—O1—H16113 (2)H8A—C8—H8B109.5
C15—O2—H18106 (2)C7—C8—H8C109.5
C6—N1—H13116 (2)H8A—C8—H8C109.5
C6—N1—H15115.7 (18)H8B—C8—H8C109.5
H13—N1—H15108 (3)C10—C9—C14122.46 (17)
C14—N2—H8109.3 (16)C10—C9—Cl3119.32 (15)
C14—N2—H11113 (2)C14—C9—Cl3118.18 (14)
H8—N2—H11105 (3)C9—C10—C11121.09 (19)
C2—C1—C6122.87 (18)C9—C10—H2117.1 (15)
C2—C1—Cl1119.93 (16)C11—C10—H2121.8 (15)
C6—C1—Cl1117.20 (15)C10—C11—C12118.14 (18)
C1—C2—C3120.23 (19)C10—C11—C15120.22 (18)
C1—C2—H5123.4 (15)C12—C11—C15121.64 (17)
C3—C2—H5116.1 (15)C13—C12—C11120.04 (17)
C4—C3—C2118.29 (18)C13—C12—H1120.7 (11)
C4—C3—C7119.86 (19)C11—C12—H1119.2 (11)
C2—C3—C7121.82 (18)C12—C13—C14123.08 (17)
C5—C4—C3120.33 (19)C12—C13—Cl4118.96 (15)
C5—C4—H3121.3 (15)C14—C13—Cl4117.93 (15)
C3—C4—H3118.4 (15)C9—C14—C13115.17 (16)
C4—C5—C6123.30 (18)C9—C14—N2121.63 (17)
C4—C5—Cl2119.27 (15)C13—C14—N2123.02 (18)
C6—C5—Cl2117.44 (15)O2—C15—C16107.45 (18)
N1—C6—C5122.21 (18)O2—C15—C11112.01 (18)
N1—C6—C1122.73 (18)C16—C15—C11111.70 (19)
C5—C6—C1114.97 (17)O2—C15—H4109.2 (14)
O1—C7—C8106.7 (2)C16—C15—H4106.3 (13)
O1—C7—C3111.71 (19)C11—C15—H4109.9 (14)
C8—C7—C3111.63 (19)C15—C16—H6109.3 (17)
O1—C7—H12108.6 (13)C15—C16—H9108.2 (13)
C8—C7—H12107.1 (13)H6—C16—H9112 (2)
C3—C7—H12110.9 (13)C15—C16—H10106.3 (16)
C7—C8—H8A109.5H6—C16—H10113 (2)
C7—C8—H8B109.5H9—C16—H10108 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H13···O2i0.82 (3)2.17 (3)2.927 (3)154 (3)
O1—H16···N1ii0.83 (3)2.12 (3)2.941 (3)169 (3)
O2—H18···N2iii0.79 (3)2.13 (3)2.912 (3)172 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z+2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H9Cl2NO
Mr206.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.472 (2), 16.110 (2), 14.6756 (19)
β (°) 107.049 (2)
V3)3723.2 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.15 × 0.13 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.909, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
9273, 3279, 2855
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.128, 1.06
No. of reflections3279
No. of parameters277
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H13···O2i0.82 (3)2.17 (3)2.927 (3)154 (3)
O1—H16···N1ii0.83 (3)2.12 (3)2.941 (3)169 (3)
O2—H18···N2iii0.79 (3)2.13 (3)2.912 (3)172 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z+2; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20802092,21072228, 81001398) for financial support.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEhrhardt, J. D. (1990). J. Labelled Compd Rad. 28, 725–729.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJudkins, B. D., Evans, B. & Meadows, J. D. (1991). Eur. Patent Appl. 460924.  Google Scholar
First citationKelser, D. R. (2007). PCT Int. Appl. 2007003896.  Google Scholar
First citationLu, S. R. (2001). Hecheng Huaxue, 9, 86–88.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPri-Bar, I. & Buchman, O. (1990). J. Labelled Compd Rad. 28, 1393–1400.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukrallah, N. A., Manfred, B. & de Feaux, L. B. (2004). Ger. Offen. 10248277.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds