organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1614-o1615

1,1′-(Ethane-1,2-di­yl)dipyridinium bis­­(iodate)

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, bDepartment of Chemistry, Sabzevar Tarbiat Moallem University, Sabzevar, Iran, and cChemistry Department, Shahid Beheshti University, G. C. Evin, Tehran 1983963113, Iran
*Correspondence e-mail: mostafa_gholizadeh@yahoo.com

(Received 16 May 2011; accepted 31 May 2011; online 11 June 2011)

The title salt, C12H14N22+·2IO3, exhibits two crystallographically independent iodate anions, the I atoms of which are each in a trigonal–pyramidal environment. In the dication, the two pyridine rings adopt an anti conformation with respect to each other; the angle between these two rings is 3.84 (19)°. In the crystal structure, C—H⋯O hydrogen bonds between the cations and anions lead to the formation of layers arranged parallel to the ab plane. I⋯O halogen bonds [R22(4) graph-set motif] range between 2.873 (2) and 3.036 (3) Å and connect neighbouring IO3 anions with each other along [100], so as to create a three-dimensional network.

Related literature

For background about the oxidative properties of the iodate anion, see: Tamami et al. (2003[Tamami, B., Parvanak-Borujeny, K. & Khakzad, M. M. (2003). Iran. Polym. J. 12, 331-338.]); Singh et al. (2008[Singh, S. P., Singh, A. K. & Singh, A. K. (2008). J. Mol. Catal. A Chem. 293, 97-102.]). For related structures, see: Gholizadeh et al. (2011[Gholizadeh, M., Hojati, S. F., Pourayoubi, M., Maleki, B., Kia, M. & Notash, B. (2011). X-ray Struct. Anal. Online. Submitted.]); Petrosyan et al. (1999[Petrosyan, A. M., Sukiasyan, R. P., Terzyan, S. S. & Burbelo, V. M. (1999). Acta Cryst. B55, 221-225.], 2000[Petrosyan, A. M., Burbelo, V. M., Tamazyan, R. A., Karapetyan, H. A. & Sukiasyan, R. P. (2000). Z. Naturforsch. Teil A, 55, 199-206.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N22+·2IO3

  • Mr = 536.05

  • Monoclinic, P 21 /n

  • a = 7.9357 (4) Å

  • b = 10.2310 (4) Å

  • c = 18.6041 (9) Å

  • β = 91.017 (4)°

  • V = 1510.23 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.20 mm−1

  • T = 298 K

  • 0.34 × 0.24 × 0.23 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])]Tmin = 0.310, Tmax = 0.379

  • 10467 measured reflections

  • 4032 independent reflections

  • 3081 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.054

  • S = 1.01

  • 4032 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.93 2.22 3.095 (5) 157
C3—H3⋯O2ii 0.93 2.37 3.133 (5) 139
C5—H5⋯O4iii 0.93 2.42 3.210 (5) 143
C6—H6B⋯O4i 0.97 2.37 3.230 (5) 148
C7—H7A⋯O2 0.97 2.52 3.420 (4) 154
C7—H7B⋯O1i 0.97 2.40 3.311 (5) 156
C8—H8⋯O1i 0.93 2.41 3.225 (5) 146
C9—H9⋯O1iv 0.93 2.49 3.297 (4) 146
C10—H10⋯O6v 0.93 2.18 3.051 (5) 156
C12—H12⋯O5iii 0.93 2.07 2.982 (5) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z; (iv) x, y-1, z; (v) x+1, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The iodate anion has the capability to oxidize various functional groups, so a range of salts of this anion, such as the potassium salt, have been prepared (Singh et al., 2008). Iodate salts are also available supported on the commercial anionic resin Amberlyst A26, and also on poly(vinylpyridine) (Tamami et al., 2003). In a recent publication, we described the synthesis and crystal structure of bis pyridinium 1,2-ethane periodate (Gholizadeh et al., 2011). Here, we report the synthesis and single-crystal X-ray structure determination of the title iodate salt. Single crystals were obtained from CH3CN at room temperature. The asymmetric unit of the title salt, C12H14N22+.2IO3- (Fig. 1), contains two crystallographically independent iodate anions and one bis pyridinium 1,2-ethane dication. Each of the I atoms in the iodate anions adopts a trigonal pyramidal geometry, the bond angles at the I atoms vary in the range from 101.03 (12)° to 101.31 (13)° for I1 and 98.89 (14)° to 102.12 (18)° for I2. The I—O bond lengths (in the range from 1.779 (3) Å to 1.803 (3) Å) and the O—I—O bond angles are comparable to those in similar compounds like for example in [C6H16N2O2]2+[HI2O6]1-[IO3]1- (Petrosyan et al., 1999).

In the dication, the two pyridine moieties adopt an anti orientation with respect to one another. Some C—H···O hydrogen bonds, with C···O distances in the range from 2.888 (4) Å to 3.420 (4) Å, lead to a 2-D aggregation parallel to (001), Table 1 and Fig. 2. The I···O contacts (I1···O5i = 2.873 (2) Å, O3—I1···O5i = 163.07 (10)°, symmetry code: (i) 1 + x, y, z; O3···I2 = 2.961 (3) Å, I1—O3···I2 = 111.02 (13)°; I1···O5ii = 3.000 (3) Å, O1—I1···O5ii = 169.45 (11)°, symmetry code: (ii) 1 - x, 1 - y, 2 - z; I2···O2ii = 3.036 (3) Å, I2···O2ii—I1ii = 99.84°, symmetry code: (ii) 1 - x, 1 - y, 2 - z) involve IO3- anions with each other, building R22(4) rings along the a axis, which connect the two-dimensional structure into a three-dimensional network (Fig. 3). The I···O distances are comparable to those in similar iodate salts (CSD, Version 5.32, November 2010 update; Allen, 2002) e.g. in bis(β-alaninium) bis(iodate) monohydrate (CSD refcode ICAYAM; Petrosyan et al., 2000). Consistent with the n-σ* character of the I···O halogen bond, the shortening of the I···O interaction distance leads to lengthening of the corresponding O—I covalent bond. The usual motif, which is found for iodate salts, is a four-membered ring containing two O and two I atoms and four I···O halogen bonds; however, a few other motifs are also found for crystal packing based on halogen bonds (CSD refcode ICAYEQ; Petrosyan et al., 2000).

Related literature top

For background about the oxidative properties of iodate anions, see: Tamami et al. (2003); Singh et al. (2008). For related structures, see: Gholizadeh et al. (2011); Petrosyan et al. (1999, 2000). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

Preparation of bis pyridinium 1,2-ethane dibromide: 1,2-Dibromoethane (22 mmol) was added to pyridine (44.8 mmol) and dimethylformamide (40 ml) and refluxed. After 2 h, the precipitate was filtered and washed with diethyl ether and dried.

Preparation of title salt: To a solution of bis pyridinium 1,2-ethane dibromide (10 mmol) in H2O (25 ml), a solution of NaIO3 (20 mmol) in H2O (25 ml) was added and stirred. After 1 h, the precipitate was filtered and washed with H2O and crystallized from CH3CN at room temperature (yield: approximately 60%). 1H NMR (500.13 MHz, DMSO-d6, 300 K, TMS): 5.23 (s, 4H, 2CH2), 8.21 (t, 4H, Ar—H), 8.69 (t, 2H, Ar—H), 8.96 p.p.m. (d, 4H, Ar—H). 13C NMR (125.76 MHz, 300 K, TMS): 60.63, 129.36, 146.18, 147.54 p.p.m.

Refinement top

Carbon-bound H atoms were placed in calculated positions, C—H = 0.93 Å (aromatic) and 0.97 Å (CH2), and were included in the refinement using a riding model approximation, with Uiso = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom labelling scheme for title salt with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of title compound with C—H···O hydrogen bonds shown as dotted lines. The two crystallographically independent iodate anions are shown in green and red colours, respectively, and the dication is coloured blue.
[Figure 3] Fig. 3. Part of the crystal packing showing the C—H···O hydrogen bonds and the I···O halogen bonds. The two crystallographically independent iodate anions are shown in green and red colours, respectively, and the dication is coloured blue.
1,1'-(Ethane-1,2-diyl)dipyridinium bis(iodate) top
Crystal data top
C12H14N22+·2IO3F(000) = 1016
Mr = 536.05Dx = 2.358 Mg m3
Monoclinic, P21/nMelting point: 435 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.9357 (4) ÅCell parameters from 4032 reflections
b = 10.2310 (4) Åθ = 2.2–29.2°
c = 18.6041 (9) ŵ = 4.20 mm1
β = 91.017 (4)°T = 298 K
V = 1510.23 (12) Å3Prism, yellow
Z = 40.34 × 0.24 × 0.23 mm
Data collection top
Stoe IPDS II
diffractometer
4032 independent reflections
Radiation source: fine-focus sealed tube3081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 2.2°
rotation method scansh = 810
Absorption correction: numerical
[shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005)]
k = 1214
Tmin = 0.310, Tmax = 0.379l = 2525
10467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
4032 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C12H14N22+·2IO3V = 1510.23 (12) Å3
Mr = 536.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9357 (4) ŵ = 4.20 mm1
b = 10.2310 (4) ÅT = 298 K
c = 18.6041 (9) Å0.34 × 0.24 × 0.23 mm
β = 91.017 (4)°
Data collection top
Stoe IPDS II
diffractometer
4032 independent reflections
Absorption correction: numerical
[shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005)]
3081 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.379Rint = 0.036
10467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.01Δρmax = 0.72 e Å3
4032 reflectionsΔρmin = 0.74 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.83152 (3)0.624927 (17)0.927824 (10)0.02673 (6)
O10.8505 (4)0.6730 (3)0.83552 (12)0.0460 (6)
N11.0346 (4)0.4963 (3)0.69249 (13)0.0308 (6)
O20.7306 (4)0.4690 (2)0.91801 (14)0.0494 (7)
C51.0641 (5)0.6193 (3)0.71494 (18)0.0369 (8)
H51.11270.63410.76010.044*
O30.6578 (4)0.7251 (3)0.95556 (14)0.0479 (6)
C10.9644 (5)0.4709 (4)0.62715 (17)0.0392 (8)
H10.94640.38520.61230.047*
C70.9171 (5)0.3298 (3)0.77240 (18)0.0371 (8)
H7A0.86580.39410.80350.045*
H7B0.83730.30880.73400.045*
C20.9203 (5)0.5730 (4)0.58323 (18)0.0483 (10)
H20.87090.55680.53840.058*
C61.0776 (5)0.3854 (3)0.7409 (2)0.0412 (8)
H6A1.15230.41510.77930.049*
H6B1.13540.31800.71420.049*
C41.0226 (6)0.7226 (4)0.67134 (19)0.0473 (10)
H41.04420.80780.68630.057*
C30.9487 (6)0.6991 (4)0.6051 (2)0.0504 (10)
H30.91820.76850.57540.061*
N20.9590 (4)0.2100 (3)0.81418 (13)0.0316 (6)
C80.9223 (5)0.0913 (3)0.78694 (18)0.0346 (7)
H80.86620.08360.74280.042*
C121.0371 (6)0.2234 (4)0.87829 (19)0.0467 (10)
H121.05760.30640.89690.056*
C90.9685 (5)0.0187 (3)0.82504 (18)0.0404 (8)
H90.94320.10100.80660.048*
C111.0868 (6)0.1146 (4)0.9166 (2)0.0515 (11)
H111.14420.12380.96030.062*
C101.0514 (5)0.0078 (4)0.8899 (2)0.0442 (9)
H101.08330.08210.91550.053*
I20.33160 (3)0.593964 (19)0.925200 (11)0.02945 (6)
O50.1485 (3)0.4896 (2)0.92384 (14)0.0438 (6)
O40.3671 (4)0.6018 (4)0.83116 (14)0.0749 (12)
O60.2414 (4)0.7504 (3)0.94274 (19)0.0656 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02842 (11)0.02451 (10)0.02716 (9)0.00238 (8)0.00252 (7)0.00285 (7)
O10.0538 (17)0.0565 (17)0.0277 (11)0.0048 (13)0.0004 (11)0.0123 (10)
N10.0380 (16)0.0258 (13)0.0286 (12)0.0015 (11)0.0018 (11)0.0048 (9)
O20.0594 (18)0.0343 (13)0.0544 (15)0.0173 (13)0.0005 (13)0.0029 (11)
C50.047 (2)0.0340 (17)0.0299 (16)0.0026 (15)0.0014 (14)0.0013 (12)
O30.0406 (16)0.0450 (15)0.0582 (16)0.0126 (12)0.0007 (12)0.0046 (12)
C10.046 (2)0.0359 (18)0.0360 (17)0.0001 (16)0.0035 (15)0.0060 (13)
C70.044 (2)0.0264 (16)0.0404 (17)0.0055 (15)0.0051 (15)0.0099 (13)
C20.053 (3)0.063 (3)0.0291 (17)0.007 (2)0.0044 (16)0.0034 (16)
C60.041 (2)0.0327 (18)0.050 (2)0.0020 (15)0.0076 (16)0.0124 (14)
C40.068 (3)0.0268 (17)0.047 (2)0.0056 (17)0.0094 (19)0.0022 (14)
C30.060 (3)0.045 (2)0.046 (2)0.0159 (19)0.0063 (18)0.0194 (16)
N20.0399 (16)0.0245 (13)0.0303 (13)0.0009 (11)0.0042 (11)0.0013 (9)
C80.040 (2)0.0324 (17)0.0317 (16)0.0021 (14)0.0018 (14)0.0041 (12)
C120.070 (3)0.0299 (17)0.0399 (18)0.0026 (18)0.0132 (18)0.0030 (14)
C90.051 (2)0.0248 (16)0.0453 (19)0.0029 (15)0.0054 (16)0.0021 (13)
C110.069 (3)0.041 (2)0.043 (2)0.0026 (19)0.019 (2)0.0085 (15)
C100.052 (2)0.0284 (17)0.053 (2)0.0031 (16)0.0008 (17)0.0099 (14)
I20.02761 (12)0.03071 (11)0.02985 (10)0.00204 (9)0.00418 (8)0.00538 (7)
O50.0388 (15)0.0344 (13)0.0581 (15)0.0117 (11)0.0027 (11)0.0044 (11)
O40.054 (2)0.142 (4)0.0285 (14)0.014 (2)0.0028 (13)0.0167 (15)
O60.063 (2)0.0259 (14)0.106 (2)0.0098 (14)0.0290 (18)0.0010 (14)
Geometric parameters (Å, º) top
I1—O21.793 (2)C4—C31.376 (5)
I1—O11.795 (2)C4—H40.9300
I1—O31.801 (3)C3—H30.9300
N1—C51.345 (4)N2—C121.341 (4)
N1—C11.353 (4)N2—C81.346 (4)
N1—C61.485 (4)C8—C91.376 (5)
C5—C41.369 (5)C8—H80.9300
C5—H50.9300C12—C111.375 (5)
C1—C21.367 (5)C12—H120.9300
C1—H10.9300C9—C101.368 (5)
C7—N21.486 (4)C9—H90.9300
C7—C61.522 (5)C11—C101.375 (5)
C7—H7A0.9700C11—H110.9300
C7—H7B0.9700C10—H100.9300
C2—C31.371 (6)I2—O41.779 (3)
C2—H20.9300I2—O61.786 (3)
C6—H6A0.9700I2—O51.803 (3)
C6—H6B0.9700
O2—I1—O1101.03 (12)C5—C4—C3119.3 (4)
O2—I1—O3101.10 (14)C5—C4—H4120.3
O1—I1—O3101.31 (13)C3—C4—H4120.3
C5—N1—C1121.7 (3)C2—C3—C4119.7 (3)
C5—N1—C6119.3 (3)C2—C3—H3120.1
C1—N1—C6119.0 (3)C4—C3—H3120.1
N1—C5—C4120.0 (3)C12—N2—C8121.4 (3)
N1—C5—H5120.0C12—N2—C7118.5 (3)
C4—C5—H5120.0C8—N2—C7120.2 (3)
N1—C1—C2119.2 (3)N2—C8—C9119.3 (3)
N1—C1—H1120.4N2—C8—H8120.3
C2—C1—H1120.4C9—C8—H8120.3
N2—C7—C6109.2 (3)N2—C12—C11120.1 (3)
N2—C7—H7A109.8N2—C12—H12119.9
C6—C7—H7A109.8C11—C12—H12119.9
N2—C7—H7B109.8C10—C9—C8120.5 (3)
C6—C7—H7B109.8C10—C9—H9119.8
H7A—C7—H7B108.3C8—C9—H9119.8
C1—C2—C3120.1 (3)C10—C11—C12119.7 (4)
C1—C2—H2119.9C10—C11—H11120.2
C3—C2—H2119.9C12—C11—H11120.2
N1—C6—C7109.5 (3)C9—C10—C11119.0 (3)
N1—C6—H6A109.8C9—C10—H10120.5
C7—C6—H6A109.8C11—C10—H10120.5
N1—C6—H6B109.8O4—I2—O6102.12 (18)
C7—C6—H6B109.8O4—I2—O598.89 (14)
H6A—C6—H6B108.2O6—I2—O5101.98 (14)
C1—N1—C5—C40.1 (6)C6—C7—N2—C1274.0 (4)
C6—N1—C5—C4179.0 (4)C6—C7—N2—C8104.5 (4)
C5—N1—C1—C20.9 (6)C12—N2—C8—C91.2 (6)
C6—N1—C1—C2178.2 (4)C7—N2—C8—C9177.2 (3)
N1—C1—C2—C30.7 (6)C8—N2—C12—C112.3 (6)
C5—N1—C6—C7104.7 (4)C7—N2—C12—C11176.1 (4)
C1—N1—C6—C774.4 (4)N2—C8—C9—C100.2 (6)
N2—C7—C6—N1173.7 (3)N2—C12—C11—C102.1 (7)
N1—C5—C4—C30.9 (6)C8—C9—C10—C110.4 (6)
C1—C2—C3—C40.3 (6)C12—C11—C10—C90.7 (7)
C5—C4—C3—C21.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.932.223.095 (5)157
C3—H3···O2ii0.932.373.133 (5)139
C5—H5···O10.932.562.888 (4)101
C5—H5···O4iii0.932.423.210 (5)143
C6—H6B···O4i0.972.373.230 (5)148
C7—H7A···O20.972.523.420 (4)154
C7—H7B···O1i0.972.403.311 (5)156
C8—H8···O1i0.932.413.225 (5)146
C9—H9···O1iv0.932.493.297 (4)146
C10—H10···O6v0.932.183.051 (5)156
C12—H12···O5iii0.932.072.982 (5)167
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC12H14N22+·2IO3
Mr536.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.9357 (4), 10.2310 (4), 18.6041 (9)
β (°) 91.017 (4)
V3)1510.23 (12)
Z4
Radiation typeMo Kα
µ (mm1)4.20
Crystal size (mm)0.34 × 0.24 × 0.23
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
[shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005)]
Tmin, Tmax0.310, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
10467, 4032, 3081
Rint0.036
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.054, 1.01
No. of reflections4032
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.74

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.93002.22003.095 (5)157.00
C3—H3···O2ii0.93002.37003.133 (5)139.00
C5—H5···O10.93002.56002.888 (4)101.00
C5—H5···O4iii0.93002.42003.210 (5)143.00
C6—H6B···O4i0.97002.37003.230 (5)148.00
C7—H7A···O20.97002.52003.420 (4)154.00
C7—H7B···O1i0.97002.40003.311 (5)156.00
C8—H8···O1i0.93002.41003.225 (5)146.00
C9—H9···O1iv0.93002.49003.297 (4)146.00
C10—H10···O6v0.93002.18003.051 (5)156.00
C12—H12···O5iii0.93002.07002.982 (5)167.00
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y1, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGholizadeh, M., Hojati, S. F., Pourayoubi, M., Maleki, B., Kia, M. & Notash, B. (2011). X-ray Struct. Anal. Online. Submitted.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetrosyan, A. M., Burbelo, V. M., Tamazyan, R. A., Karapetyan, H. A. & Sukiasyan, R. P. (2000). Z. Naturforsch. Teil A, 55, 199–206.  CAS Google Scholar
First citationPetrosyan, A. M., Sukiasyan, R. P., Terzyan, S. S. & Burbelo, V. M. (1999). Acta Cryst. B55, 221–225.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. P., Singh, A. K. & Singh, A. K. (2008). J. Mol. Catal. A Chem. 293, 97–102.  CrossRef CAS Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTamami, B., Parvanak-Borujeny, K. & Khakzad, M. M. (2003). Iran. Polym. J. 12, 331–338.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1614-o1615
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds