organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Naphthalen-1-yl­amino)­cyclo­hexa­nol

aEquipe de Chimie de Coordination et Catalyse, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 3 June 2011; accepted 6 June 2011; online 11 June 2011)

The title compound, C16H19NO, was synthesized under solvent-free conditions by reaction of 7-oxa-bicyclo­[4.1.0]heptane and naphthalen-1-amine in the presence of Ca(CF3COO)2 as catalyst. The cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions into chains parallel to the c axis.

Related literature

For background to applications of β-amino­alcohols in organic synthesis, see: Rogers et al. (1989[Rogers, G. A., Parsons, S. M., Anderson, D. C., Nilsson, L. M., Bahr, B. A., Kornreich, W. D., Kaufman, R., Jacobs, R. S. & Kirtman, B. (1989). J. Med. Chem. 32, 1217-1230.]); O'Brien (1999[O'Brien, P. (1999). Angew. Chem. Int. Ed. 38, 326-329.]); Ager et al. (1996[Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835-875.]). For the synthesis of β-amino­alcohols, see: Deyrup & Moyer (1969[Deyrup, J. A. & Moyer, C. L. (1969). J. Org. Chem. 34, 175-179.]); Kamal, Ramu et al. (2005[Kamal, A., Ramu, R., Azhar, M. A. & Khanna, G. B. R. (2005). Tetrahedron Lett. 46, 2675-2677.]); Yarapathy et al. (2006[Yarapathy, V. R., Mekala, S., Rao, B. V. & Tammishetti, S. (2006). Catal. Commun. 7, 466-471.]); Yadav et al. (2003[Yadav, J. S., Reddy, B. V. S., Basak, A. K. & Narsaiah, A. V. (2003). Tetrahedron Lett. 44, 1047-1050.]); Rafiee et al. (2004[Rafiee, E., Tangestaninejad, S., Habibi, M. H. & Mirkhani, V. (2004). Synth. Commun. 34, 3673-3681.]); Robin et al. (2007[Robin, A., Brown, F., Bahamontes-Rosa, N., Wu, B., Beitz, E., Kun, J. F. J. & Flitsch, S. L. (2007). J. Med. Chem. 50, 4243-4249.]); Das et al. (2000[Das, U., Crousse, B., Kesavan, V., Bonnet-Delpon, D. & Begue, J. P. (2000). J. Org. Chem. 65, 6749-6751.]); Kamal, Adil & Arifuddin (2005[Kamal, A., Adil, S. F. & Arifuddin, M. (2005). Ultrason. Sonochem. 12, 429-431.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO

  • Mr = 241.32

  • Orthorhombic, P c a 21

  • a = 12.0278 (4) Å

  • b = 11.5910 (3) Å

  • c = 9.5566 (3) Å

  • V = 1332.33 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 294 K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Siemens AED diffractometer

  • 4933 measured reflections

  • 1353 independent reflections

  • 1326 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 100 reflections intensity decay: 0.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.087

  • S = 1.08

  • 1353 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C11/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (3) 2.30 (3) 3.125 (2) 171 (2)
C14—H14⋯Cg1i 0.93 2.71 3.530 (3) 148
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: AED (Belletti et al., 1993[Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.]); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

β-Amino alcohols are useful organic intermediates owing to their versatility as building blocks in the synthesis of several biologically active natural products (Rogers et al., 1989), unnatural amino acids (O'Brien, 1999) and chiral auxiliaries (Ager et al., 1996). These compounds are traditionally synthesized by direct treatment of epoxides with excessive amounts of amines at elevated temperatures (Deyrup & Moyer, 1969). Under such conditions, less reactive epoxides and sluggish amines react slowly and sensitive functional groups undergo undesirable side reactions. Many alterations were made in recent years to enhance the synthetic scope of this reaction by the use of Lewis acid catalysis (Kamal, Ramu et al., 2005), solid phase synthesis (Yarapathy et al., 2006), ionic liquids (Yadav et al., 2003), heteropolyacids (Rafiee et al., 2004), microwave irradiation (Robin et al., 2007), fluorinated solvents (Das et al., 2000), and ultrasound mediation (Kamal, Adil & Arifuddin, 2005). As a contribution to this widespread area, we describe here the synthesis and crystal structure of the title amino alcohol.

In the molecule of the title compound (Fig. 1), the cyclohexane ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5765 (19) Å, θ = 2.6 (2)° and ϕ = 31 (5)°. The hydroxy and amine substituent to the ring are equatorially oriented. In the crystal structure (Fig. 2), intermolecular N—H···O hydrogen bonds and C—H···π interactions (Table 1) link the molecules into chains running parallel to the c axis.

Related literature top

For background to applications of β-aminoalcohols in organic synthesis, see: Rogers et al. (1989); O'Brien (1999); Ager et al. (1996). For the synthesis of β-aminoalcohols, see: Deyrup & Moyer (1969); Kamal, Ramu et al. (2005); Yarapathy et al. (2006); Yadav et al. (2003); Rafiee et al. (2004); Robin et al. (2007); Das et al. (2000); Kamal, Adil & Arifuddin (2005). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a screw capped vial equipped with a magnetic stirrer, Ca(CF3CO2)2 (0.03 g, 0.11 mmol) was added to naphthalen-1-amine (0.293 g, 2.04 mmol) and 7-oxa-bicyclo[4.1.0]heptane (0.481 g, 2.00 mmol), and the resulting mixture was left under vigorous stirring at 313 K (40°C) for 31 h. The mixture was extracted with AcOEt (3 × 10 ml), and the combined organic layers were dried over anhydrous Na2SO4. The combined filtrates were concentrated under vacuum to afford the title product (276 mg, yield 56%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a diethyl ether solution. M.p. 366–367 K.

Refinement top

The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant anomalous scattering effects, 460 Friedel pairs were merged in the last cycles of refinement.

Computing details top

Data collection: AED (Belletti et al., 1993); cell refinement: AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the formation of molecular chains along the a axis via intermolecular N—H···O hydrogen bonds (red dashed lines) and C—H···π interactions (green dashed lines).
2-(Naphthalen-1-ylamino)cyclohexanol top
Crystal data top
C16H19NOF(000) = 520
Mr = 241.32Dx = 1.203 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 48 reflections
a = 12.0278 (4) Åθ = 16.7–36.3°
b = 11.5910 (3) ŵ = 0.58 mm1
c = 9.5566 (3) ÅT = 294 K
V = 1332.33 (7) Å3Block, pale-blue
Z = 40.18 × 0.15 × 0.10 mm
Data collection top
Siemens AED
diffractometer
Rint = 0.034
Radiation source: fine-focus sealed tubeθmax = 69.9°, θmin = 3.8°
Graphite monochromatorh = 1413
θ/2θ scansk = 1413
4933 measured reflectionsl = 115
1353 independent reflections3 standard reflections every 100 reflections
1326 reflections with I > 2σ(I) intensity decay: 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.0897P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1353 reflectionsΔρmax = 0.14 e Å3
169 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (11)
Crystal data top
C16H19NOV = 1332.33 (7) Å3
Mr = 241.32Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 12.0278 (4) ŵ = 0.58 mm1
b = 11.5910 (3) ÅT = 294 K
c = 9.5566 (3) Å0.18 × 0.15 × 0.10 mm
Data collection top
Siemens AED
diffractometer
Rint = 0.034
4933 measured reflections3 standard reflections every 100 reflections
1353 independent reflections intensity decay: 0.0%
1326 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.14 e Å3
1353 reflectionsΔρmin = 0.13 e Å3
169 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27577 (13)0.01165 (12)0.00639 (19)0.0690 (4)
H1O0.27880.05220.04310.104*
N10.14586 (12)0.08201 (12)0.21600 (17)0.0491 (3)
H1N0.1730 (16)0.0622 (17)0.292 (3)0.054 (5)*
C10.20467 (14)0.08488 (14)0.08667 (19)0.0471 (4)
H10.24640.11370.16750.057*
C20.16883 (16)0.18640 (16)0.0013 (2)0.0572 (4)
H2A0.23390.22840.03310.069*
H2B0.12880.15910.08290.069*
C30.09482 (17)0.26593 (17)0.0831 (3)0.0661 (6)
H3A0.13660.29760.16090.079*
H3B0.07060.32960.02460.079*
C40.00636 (18)0.20139 (19)0.1385 (3)0.0747 (7)
H4A0.05000.25270.19690.090*
H4B0.05250.17740.06050.090*
C50.02757 (15)0.09561 (16)0.2233 (2)0.0577 (5)
H5A0.03840.05290.25030.069*
H5B0.06510.12020.30810.069*
C60.10412 (13)0.01752 (13)0.13964 (18)0.0458 (4)
H60.06280.01070.05820.055*
C70.08882 (12)0.18703 (14)0.22162 (18)0.0431 (3)
C80.01028 (14)0.20562 (15)0.1532 (2)0.0500 (4)
H80.04350.14560.10400.060*
C90.06185 (15)0.31447 (17)0.1569 (2)0.0583 (5)
H90.12840.32530.10910.070*
C100.01684 (16)0.40383 (17)0.2286 (3)0.0609 (5)
H100.05270.47490.23030.073*
C110.08457 (15)0.38906 (15)0.3007 (2)0.0530 (4)
C120.1337 (2)0.47978 (17)0.3771 (3)0.0687 (6)
H120.09840.55110.38050.082*
C130.2316 (2)0.46537 (17)0.4458 (3)0.0744 (6)
H130.26180.52610.49680.089*
C140.28733 (17)0.35946 (17)0.4400 (3)0.0630 (5)
H140.35500.35040.48590.076*
C150.24238 (16)0.26941 (14)0.3671 (2)0.0508 (4)
H150.28030.19950.36360.061*
C160.13946 (13)0.28016 (13)0.29679 (17)0.0443 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0746 (9)0.0685 (8)0.0640 (9)0.0070 (7)0.0230 (8)0.0016 (8)
N10.0558 (8)0.0455 (7)0.0460 (8)0.0049 (6)0.0107 (7)0.0054 (7)
C10.0484 (8)0.0510 (8)0.0419 (8)0.0012 (7)0.0005 (7)0.0008 (7)
C20.0614 (10)0.0588 (9)0.0513 (10)0.0102 (8)0.0018 (8)0.0113 (9)
C30.0658 (11)0.0534 (10)0.0793 (14)0.0043 (8)0.0012 (11)0.0181 (10)
C40.0556 (10)0.0691 (13)0.0995 (19)0.0144 (9)0.0103 (12)0.0260 (13)
C50.0532 (9)0.0604 (10)0.0595 (11)0.0051 (8)0.0087 (9)0.0113 (9)
C60.0478 (7)0.0490 (8)0.0407 (9)0.0029 (6)0.0057 (7)0.0039 (7)
C70.0445 (7)0.0460 (8)0.0389 (8)0.0010 (6)0.0033 (7)0.0017 (7)
C80.0462 (8)0.0537 (9)0.0501 (10)0.0019 (7)0.0029 (7)0.0006 (8)
C90.0486 (9)0.0647 (10)0.0616 (11)0.0069 (8)0.0053 (9)0.0068 (10)
C100.0596 (10)0.0545 (10)0.0684 (12)0.0133 (8)0.0016 (10)0.0020 (9)
C110.0580 (9)0.0501 (8)0.0508 (10)0.0029 (7)0.0059 (8)0.0026 (8)
C120.0814 (13)0.0501 (9)0.0747 (15)0.0058 (9)0.0010 (12)0.0125 (10)
C130.0828 (15)0.0594 (10)0.0811 (15)0.0082 (10)0.0099 (13)0.0226 (12)
C140.0622 (10)0.0653 (10)0.0616 (11)0.0076 (9)0.0105 (9)0.0066 (10)
C150.0516 (8)0.0516 (8)0.0491 (9)0.0001 (8)0.0023 (8)0.0023 (8)
C160.0478 (8)0.0466 (8)0.0385 (8)0.0007 (6)0.0044 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—C11.428 (2)C6—H60.9800
O1—H1O0.8200C7—C81.377 (2)
N1—C71.398 (2)C7—C161.433 (2)
N1—C61.454 (2)C8—C91.406 (2)
N1—H1N0.83 (3)C8—H80.9300
C1—C21.509 (2)C9—C101.355 (3)
C1—C61.526 (2)C9—H90.9300
C1—H10.9800C10—C111.411 (3)
C2—C31.514 (3)C10—H100.9300
C2—H2A0.9700C11—C121.410 (3)
C2—H2B0.9700C11—C161.425 (2)
C3—C41.523 (3)C12—C131.359 (4)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—C141.399 (3)
C4—C51.526 (3)C13—H130.9300
C4—H4A0.9700C14—C151.367 (3)
C4—H4B0.9700C14—H140.9300
C5—C61.519 (3)C15—C161.414 (3)
C5—H5A0.9700C15—H150.9300
C5—H5B0.9700
C1—O1—H1O109.5N1—C6—C1107.38 (13)
C7—N1—C6122.71 (14)C5—C6—C1110.50 (13)
C7—N1—H1N113.6 (15)N1—C6—H6108.0
C6—N1—H1N110.9 (14)C5—C6—H6108.0
O1—C1—C2109.60 (16)C1—C6—H6108.0
O1—C1—C6110.40 (13)C8—C7—N1122.87 (15)
C2—C1—C6110.94 (14)C8—C7—C16119.24 (15)
O1—C1—H1108.6N1—C7—C16117.81 (14)
C2—C1—H1108.6C7—C8—C9120.67 (17)
C6—C1—H1108.6C7—C8—H8119.7
C1—C2—C3110.28 (17)C9—C8—H8119.7
C1—C2—H2A109.6C10—C9—C8121.51 (17)
C3—C2—H2A109.6C10—C9—H9119.2
C1—C2—H2B109.6C8—C9—H9119.2
C3—C2—H2B109.6C9—C10—C11119.97 (17)
H2A—C2—H2B108.1C9—C10—H10120.0
C2—C3—C4110.83 (17)C11—C10—H10120.0
C2—C3—H3A109.5C12—C11—C10121.65 (17)
C4—C3—H3A109.5C12—C11—C16118.67 (18)
C2—C3—H3B109.5C10—C11—C16119.68 (16)
C4—C3—H3B109.5C13—C12—C11121.47 (19)
H3A—C3—H3B108.1C13—C12—H12119.3
C3—C4—C5111.45 (16)C11—C12—H12119.3
C3—C4—H4A109.3C12—C13—C14120.24 (19)
C5—C4—H4A109.3C12—C13—H13119.9
C3—C4—H4B109.3C14—C13—H13119.9
C5—C4—H4B109.3C15—C14—C13120.04 (19)
H4A—C4—H4B108.0C15—C14—H14120.0
C6—C5—C4111.16 (18)C13—C14—H14120.0
C6—C5—H5A109.4C14—C15—C16121.42 (17)
C4—C5—H5A109.4C14—C15—H15119.3
C6—C5—H5B109.4C16—C15—H15119.3
C4—C5—H5B109.4C15—C16—C11118.12 (15)
H5A—C5—H5B108.0C15—C16—C7122.96 (14)
N1—C6—C5114.69 (15)C11—C16—C7118.92 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C11/C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (3)2.30 (3)3.125 (2)171 (2)
C14—H14···Cg1i0.932.713.530 (3)148
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H19NO
Mr241.32
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)294
a, b, c (Å)12.0278 (4), 11.5910 (3), 9.5566 (3)
V3)1332.33 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerSiemens AED
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4933, 1353, 1326
Rint0.034
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.08
No. of reflections1353
No. of parameters169
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C11/C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (3)2.30 (3)3.125 (2)171 (2)
C14—H14···Cg1i0.932.713.530 (3)148
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationAger, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–875.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDas, U., Crousse, B., Kesavan, V., Bonnet-Delpon, D. & Begue, J. P. (2000). J. Org. Chem. 65, 6749–6751.  CrossRef PubMed CAS Google Scholar
First citationDeyrup, J. A. & Moyer, C. L. (1969). J. Org. Chem. 34, 175–179.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKamal, A., Adil, S. F. & Arifuddin, M. (2005). Ultrason. Sonochem. 12, 429–431.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamal, A., Ramu, R., Azhar, M. A. & Khanna, G. B. R. (2005). Tetrahedron Lett. 46, 2675–2677.  CrossRef CAS Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationO'Brien, P. (1999). Angew. Chem. Int. Ed. 38, 326–329.  CAS Google Scholar
First citationRafiee, E., Tangestaninejad, S., Habibi, M. H. & Mirkhani, V. (2004). Synth. Commun. 34, 3673–3681.  CrossRef CAS Google Scholar
First citationRobin, A., Brown, F., Bahamontes-Rosa, N., Wu, B., Beitz, E., Kun, J. F. J. & Flitsch, S. L. (2007). J. Med. Chem. 50, 4243–4249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRogers, G. A., Parsons, S. M., Anderson, D. C., Nilsson, L. M., Bahr, B. A., Kornreich, W. D., Kaufman, R., Jacobs, R. S. & Kirtman, B. (1989). J. Med. Chem. 32, 1217–1230.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, J. S., Reddy, B. V. S., Basak, A. K. & Narsaiah, A. V. (2003). Tetrahedron Lett. 44, 1047–1050.  CrossRef CAS Google Scholar
First citationYarapathy, V. R., Mekala, S., Rao, B. V. & Tammishetti, S. (2006). Catal. Commun. 7, 466–471.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds