organic compounds
2-(Naphthalen-1-ylamino)cyclohexanol
aEquipe de Chimie de Coordination et Catalyse, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it
The title compound, C16H19NO, was synthesized under solvent-free conditions by reaction of 7-oxa-bicyclo[4.1.0]heptane and naphthalen-1-amine in the presence of Ca(CF3COO)2 as catalyst. The cyclohexane ring adopts a chair conformation. In the crystal, molecules are linked by intermolecular N—H⋯O hydrogen bonds and C—H⋯π interactions into chains parallel to the c axis.
Related literature
For background to applications of β-aminoalcohols in organic synthesis, see: Rogers et al. (1989); O'Brien (1999); Ager et al. (1996). For the synthesis of β-aminoalcohols, see: Deyrup & Moyer (1969); Kamal, Ramu et al. (2005); Yarapathy et al. (2006); Yadav et al. (2003); Rafiee et al. (2004); Robin et al. (2007); Das et al. (2000); Kamal, Adil & Arifuddin (2005). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: AED (Belletti et al., 1993); cell AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).
Supporting information
10.1107/S1600536811021714/zl2377sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021714/zl2377Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811021714/zl2377Isup3.cml
In a screw capped vial equipped with a magnetic stirrer, Ca(CF3CO2)2 (0.03 g, 0.11 mmol) was added to naphthalen-1-amine (0.293 g, 2.04 mmol) and 7-oxa-bicyclo[4.1.0]heptane (0.481 g, 2.00 mmol), and the resulting mixture was left under vigorous stirring at 313 K (40°C) for 31 h. The mixture was extracted with AcOEt (3 × 10 ml), and the combined organic layers were dried over anhydrous Na2SO4. The combined filtrates were concentrated under vacuum to afford the title product (276 mg, yield 56%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a diethyl ether solution. M.p. 366–367 K.
The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant
effects, 460 Friedel pairs were merged in the last cycles of refinement.Data collection: AED (Belletti et al., 1993); cell
AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).C16H19NO | F(000) = 520 |
Mr = 241.32 | Dx = 1.203 Mg m−3 |
Orthorhombic, Pca21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2c -2ac | Cell parameters from 48 reflections |
a = 12.0278 (4) Å | θ = 16.7–36.3° |
b = 11.5910 (3) Å | µ = 0.58 mm−1 |
c = 9.5566 (3) Å | T = 294 K |
V = 1332.33 (7) Å3 | Block, pale-blue |
Z = 4 | 0.18 × 0.15 × 0.10 mm |
Siemens AED diffractometer | Rint = 0.034 |
Radiation source: fine-focus sealed tube | θmax = 69.9°, θmin = 3.8° |
Graphite monochromator | h = −14→13 |
θ/2θ scans | k = −14→13 |
4933 measured reflections | l = −11→5 |
1353 independent reflections | 3 standard reflections every 100 reflections |
1326 reflections with I > 2σ(I) | intensity decay: 0.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.0897P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1353 reflections | Δρmax = 0.14 e Å−3 |
169 parameters | Δρmin = −0.13 e Å−3 |
1 restraint | Extinction correction: SHELXL |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0102 (11) |
C16H19NO | V = 1332.33 (7) Å3 |
Mr = 241.32 | Z = 4 |
Orthorhombic, Pca21 | Cu Kα radiation |
a = 12.0278 (4) Å | µ = 0.58 mm−1 |
b = 11.5910 (3) Å | T = 294 K |
c = 9.5566 (3) Å | 0.18 × 0.15 × 0.10 mm |
Siemens AED diffractometer | Rint = 0.034 |
4933 measured reflections | 3 standard reflections every 100 reflections |
1353 independent reflections | intensity decay: 0.0% |
1326 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.030 | 1 restraint |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.14 e Å−3 |
1353 reflections | Δρmin = −0.13 e Å−3 |
169 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27577 (13) | −0.01165 (12) | 0.00639 (19) | 0.0690 (4) | |
H1O | 0.2788 | 0.0522 | 0.0431 | 0.104* | |
N1 | 0.14586 (12) | 0.08201 (12) | 0.21600 (17) | 0.0491 (3) | |
H1N | 0.1730 (16) | 0.0622 (17) | 0.292 (3) | 0.054 (5)* | |
C1 | 0.20467 (14) | −0.08488 (14) | 0.08667 (19) | 0.0471 (4) | |
H1 | 0.2464 | −0.1137 | 0.1675 | 0.057* | |
C2 | 0.16883 (16) | −0.18640 (16) | −0.0013 (2) | 0.0572 (4) | |
H2A | 0.2339 | −0.2284 | −0.0331 | 0.069* | |
H2B | 0.1288 | −0.1591 | −0.0829 | 0.069* | |
C3 | 0.09482 (17) | −0.26593 (17) | 0.0831 (3) | 0.0661 (6) | |
H3A | 0.1366 | −0.2976 | 0.1609 | 0.079* | |
H3B | 0.0706 | −0.3296 | 0.0246 | 0.079* | |
C4 | −0.00636 (18) | −0.20139 (19) | 0.1385 (3) | 0.0747 (7) | |
H4A | −0.0500 | −0.2527 | 0.1969 | 0.090* | |
H4B | −0.0525 | −0.1774 | 0.0605 | 0.090* | |
C5 | 0.02757 (15) | −0.09561 (16) | 0.2233 (2) | 0.0577 (5) | |
H5A | −0.0384 | −0.0529 | 0.2503 | 0.069* | |
H5B | 0.0651 | −0.1202 | 0.3081 | 0.069* | |
C6 | 0.10412 (13) | −0.01752 (13) | 0.13964 (18) | 0.0458 (4) | |
H6 | 0.0628 | 0.0107 | 0.0582 | 0.055* | |
C7 | 0.08882 (12) | 0.18703 (14) | 0.22162 (18) | 0.0431 (3) | |
C8 | −0.01028 (14) | 0.20562 (15) | 0.1532 (2) | 0.0500 (4) | |
H8 | −0.0435 | 0.1456 | 0.1040 | 0.060* | |
C9 | −0.06185 (15) | 0.31447 (17) | 0.1569 (2) | 0.0583 (5) | |
H9 | −0.1284 | 0.3253 | 0.1091 | 0.070* | |
C10 | −0.01684 (16) | 0.40383 (17) | 0.2286 (3) | 0.0609 (5) | |
H10 | −0.0527 | 0.4749 | 0.2303 | 0.073* | |
C11 | 0.08457 (15) | 0.38906 (15) | 0.3007 (2) | 0.0530 (4) | |
C12 | 0.1337 (2) | 0.47978 (17) | 0.3771 (3) | 0.0687 (6) | |
H12 | 0.0984 | 0.5511 | 0.3805 | 0.082* | |
C13 | 0.2316 (2) | 0.46537 (17) | 0.4458 (3) | 0.0744 (6) | |
H13 | 0.2618 | 0.5261 | 0.4968 | 0.089* | |
C14 | 0.28733 (17) | 0.35946 (17) | 0.4400 (3) | 0.0630 (5) | |
H14 | 0.3550 | 0.3504 | 0.4859 | 0.076* | |
C15 | 0.24238 (16) | 0.26941 (14) | 0.3671 (2) | 0.0508 (4) | |
H15 | 0.2803 | 0.1995 | 0.3636 | 0.061* | |
C16 | 0.13946 (13) | 0.28016 (13) | 0.29679 (17) | 0.0443 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0746 (9) | 0.0685 (8) | 0.0640 (9) | −0.0070 (7) | 0.0230 (8) | 0.0016 (8) |
N1 | 0.0558 (8) | 0.0455 (7) | 0.0460 (8) | 0.0049 (6) | −0.0107 (7) | −0.0054 (7) |
C1 | 0.0484 (8) | 0.0510 (8) | 0.0419 (8) | 0.0012 (7) | 0.0005 (7) | 0.0008 (7) |
C2 | 0.0614 (10) | 0.0588 (9) | 0.0513 (10) | 0.0102 (8) | −0.0018 (8) | −0.0113 (9) |
C3 | 0.0658 (11) | 0.0534 (10) | 0.0793 (14) | −0.0043 (8) | 0.0012 (11) | −0.0181 (10) |
C4 | 0.0556 (10) | 0.0691 (13) | 0.0995 (19) | −0.0144 (9) | 0.0103 (12) | −0.0260 (13) |
C5 | 0.0532 (9) | 0.0604 (10) | 0.0595 (11) | −0.0051 (8) | 0.0087 (9) | −0.0113 (9) |
C6 | 0.0478 (7) | 0.0490 (8) | 0.0407 (9) | 0.0029 (6) | −0.0057 (7) | −0.0039 (7) |
C7 | 0.0445 (7) | 0.0460 (8) | 0.0389 (8) | 0.0010 (6) | 0.0033 (7) | 0.0017 (7) |
C8 | 0.0462 (8) | 0.0537 (9) | 0.0501 (10) | −0.0019 (7) | −0.0029 (7) | 0.0006 (8) |
C9 | 0.0486 (9) | 0.0647 (10) | 0.0616 (11) | 0.0069 (8) | −0.0053 (9) | 0.0068 (10) |
C10 | 0.0596 (10) | 0.0545 (10) | 0.0684 (12) | 0.0133 (8) | 0.0016 (10) | 0.0020 (9) |
C11 | 0.0580 (9) | 0.0501 (8) | 0.0508 (10) | 0.0029 (7) | 0.0059 (8) | −0.0026 (8) |
C12 | 0.0814 (13) | 0.0501 (9) | 0.0747 (15) | 0.0058 (9) | −0.0010 (12) | −0.0125 (10) |
C13 | 0.0828 (15) | 0.0594 (10) | 0.0811 (15) | −0.0082 (10) | −0.0099 (13) | −0.0226 (12) |
C14 | 0.0622 (10) | 0.0653 (10) | 0.0616 (11) | −0.0076 (9) | −0.0105 (9) | −0.0066 (10) |
C15 | 0.0516 (8) | 0.0516 (8) | 0.0491 (9) | −0.0001 (8) | −0.0023 (8) | −0.0023 (8) |
C16 | 0.0478 (8) | 0.0466 (8) | 0.0385 (8) | −0.0007 (6) | 0.0044 (7) | −0.0003 (7) |
O1—C1 | 1.428 (2) | C6—H6 | 0.9800 |
O1—H1O | 0.8200 | C7—C8 | 1.377 (2) |
N1—C7 | 1.398 (2) | C7—C16 | 1.433 (2) |
N1—C6 | 1.454 (2) | C8—C9 | 1.406 (2) |
N1—H1N | 0.83 (3) | C8—H8 | 0.9300 |
C1—C2 | 1.509 (2) | C9—C10 | 1.355 (3) |
C1—C6 | 1.526 (2) | C9—H9 | 0.9300 |
C1—H1 | 0.9800 | C10—C11 | 1.411 (3) |
C2—C3 | 1.514 (3) | C10—H10 | 0.9300 |
C2—H2A | 0.9700 | C11—C12 | 1.410 (3) |
C2—H2B | 0.9700 | C11—C16 | 1.425 (2) |
C3—C4 | 1.523 (3) | C12—C13 | 1.359 (4) |
C3—H3A | 0.9700 | C12—H12 | 0.9300 |
C3—H3B | 0.9700 | C13—C14 | 1.399 (3) |
C4—C5 | 1.526 (3) | C13—H13 | 0.9300 |
C4—H4A | 0.9700 | C14—C15 | 1.367 (3) |
C4—H4B | 0.9700 | C14—H14 | 0.9300 |
C5—C6 | 1.519 (3) | C15—C16 | 1.414 (3) |
C5—H5A | 0.9700 | C15—H15 | 0.9300 |
C5—H5B | 0.9700 | ||
C1—O1—H1O | 109.5 | N1—C6—C1 | 107.38 (13) |
C7—N1—C6 | 122.71 (14) | C5—C6—C1 | 110.50 (13) |
C7—N1—H1N | 113.6 (15) | N1—C6—H6 | 108.0 |
C6—N1—H1N | 110.9 (14) | C5—C6—H6 | 108.0 |
O1—C1—C2 | 109.60 (16) | C1—C6—H6 | 108.0 |
O1—C1—C6 | 110.40 (13) | C8—C7—N1 | 122.87 (15) |
C2—C1—C6 | 110.94 (14) | C8—C7—C16 | 119.24 (15) |
O1—C1—H1 | 108.6 | N1—C7—C16 | 117.81 (14) |
C2—C1—H1 | 108.6 | C7—C8—C9 | 120.67 (17) |
C6—C1—H1 | 108.6 | C7—C8—H8 | 119.7 |
C1—C2—C3 | 110.28 (17) | C9—C8—H8 | 119.7 |
C1—C2—H2A | 109.6 | C10—C9—C8 | 121.51 (17) |
C3—C2—H2A | 109.6 | C10—C9—H9 | 119.2 |
C1—C2—H2B | 109.6 | C8—C9—H9 | 119.2 |
C3—C2—H2B | 109.6 | C9—C10—C11 | 119.97 (17) |
H2A—C2—H2B | 108.1 | C9—C10—H10 | 120.0 |
C2—C3—C4 | 110.83 (17) | C11—C10—H10 | 120.0 |
C2—C3—H3A | 109.5 | C12—C11—C10 | 121.65 (17) |
C4—C3—H3A | 109.5 | C12—C11—C16 | 118.67 (18) |
C2—C3—H3B | 109.5 | C10—C11—C16 | 119.68 (16) |
C4—C3—H3B | 109.5 | C13—C12—C11 | 121.47 (19) |
H3A—C3—H3B | 108.1 | C13—C12—H12 | 119.3 |
C3—C4—C5 | 111.45 (16) | C11—C12—H12 | 119.3 |
C3—C4—H4A | 109.3 | C12—C13—C14 | 120.24 (19) |
C5—C4—H4A | 109.3 | C12—C13—H13 | 119.9 |
C3—C4—H4B | 109.3 | C14—C13—H13 | 119.9 |
C5—C4—H4B | 109.3 | C15—C14—C13 | 120.04 (19) |
H4A—C4—H4B | 108.0 | C15—C14—H14 | 120.0 |
C6—C5—C4 | 111.16 (18) | C13—C14—H14 | 120.0 |
C6—C5—H5A | 109.4 | C14—C15—C16 | 121.42 (17) |
C4—C5—H5A | 109.4 | C14—C15—H15 | 119.3 |
C6—C5—H5B | 109.4 | C16—C15—H15 | 119.3 |
C4—C5—H5B | 109.4 | C15—C16—C11 | 118.12 (15) |
H5A—C5—H5B | 108.0 | C15—C16—C7 | 122.96 (14) |
N1—C6—C5 | 114.69 (15) | C11—C16—C7 | 118.92 (15) |
Cg1 is the centroid of the C7–C11/C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.83 (3) | 2.30 (3) | 3.125 (2) | 171 (2) |
C14—H14···Cg1i | 0.93 | 2.71 | 3.530 (3) | 148 |
Symmetry code: (i) −x+1/2, y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H19NO |
Mr | 241.32 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 294 |
a, b, c (Å) | 12.0278 (4), 11.5910 (3), 9.5566 (3) |
V (Å3) | 1332.33 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.58 |
Crystal size (mm) | 0.18 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Siemens AED diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4933, 1353, 1326 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.087, 1.08 |
No. of reflections | 1353 |
No. of parameters | 169 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.13 |
Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 and PARST95 (Nardelli, 1995).
Cg1 is the centroid of the C7–C11/C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.83 (3) | 2.30 (3) | 3.125 (2) | 171 (2) |
C14—H14···Cg1i | 0.93 | 2.71 | 3.530 (3) | 148 |
Symmetry code: (i) −x+1/2, y, z+1/2. |
Acknowledgements
Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.
References
Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–875. CrossRef PubMed CAS Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Das, U., Crousse, B., Kesavan, V., Bonnet-Delpon, D. & Begue, J. P. (2000). J. Org. Chem. 65, 6749–6751. CrossRef PubMed CAS Google Scholar
Deyrup, J. A. & Moyer, C. L. (1969). J. Org. Chem. 34, 175–179. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kamal, A., Adil, S. F. & Arifuddin, M. (2005). Ultrason. Sonochem. 12, 429–431. Web of Science CrossRef PubMed CAS Google Scholar
Kamal, A., Ramu, R., Azhar, M. A. & Khanna, G. B. R. (2005). Tetrahedron Lett. 46, 2675–2677. CrossRef CAS Google Scholar
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
O'Brien, P. (1999). Angew. Chem. Int. Ed. 38, 326–329. CAS Google Scholar
Rafiee, E., Tangestaninejad, S., Habibi, M. H. & Mirkhani, V. (2004). Synth. Commun. 34, 3673–3681. CrossRef CAS Google Scholar
Robin, A., Brown, F., Bahamontes-Rosa, N., Wu, B., Beitz, E., Kun, J. F. J. & Flitsch, S. L. (2007). J. Med. Chem. 50, 4243–4249. Web of Science CrossRef PubMed CAS Google Scholar
Rogers, G. A., Parsons, S. M., Anderson, D. C., Nilsson, L. M., Bahr, B. A., Kornreich, W. D., Kaufman, R., Jacobs, R. S. & Kirtman, B. (1989). J. Med. Chem. 32, 1217–1230. CSD CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, J. S., Reddy, B. V. S., Basak, A. K. & Narsaiah, A. V. (2003). Tetrahedron Lett. 44, 1047–1050. CrossRef CAS Google Scholar
Yarapathy, V. R., Mekala, S., Rao, B. V. & Tammishetti, S. (2006). Catal. Commun. 7, 466–471. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
β-Amino alcohols are useful organic intermediates owing to their versatility as building blocks in the synthesis of several biologically active natural products (Rogers et al., 1989), unnatural amino acids (O'Brien, 1999) and chiral auxiliaries (Ager et al., 1996). These compounds are traditionally synthesized by direct treatment of epoxides with excessive amounts of amines at elevated temperatures (Deyrup & Moyer, 1969). Under such conditions, less reactive epoxides and sluggish amines react slowly and sensitive functional groups undergo undesirable side reactions. Many alterations were made in recent years to enhance the synthetic scope of this reaction by the use of Lewis acid catalysis (Kamal, Ramu et al., 2005), solid phase synthesis (Yarapathy et al., 2006), ionic liquids (Yadav et al., 2003), heteropolyacids (Rafiee et al., 2004), microwave irradiation (Robin et al., 2007), fluorinated solvents (Das et al., 2000), and ultrasound mediation (Kamal, Adil & Arifuddin, 2005). As a contribution to this widespread area, we describe here the synthesis and crystal structure of the title amino alcohol.
In the molecule of the title compound (Fig. 1), the cyclohexane ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5765 (19) Å, θ = 2.6 (2)° and ϕ = 31 (5)°. The hydroxy and amine substituent to the ring are equatorially oriented. In the crystal structure (Fig. 2), intermolecular N—H···O hydrogen bonds and C—H···π interactions (Table 1) link the molecules into chains running parallel to the c axis.