organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1653-o1654

2,6-Anhydro-1,3-di-O-benzyl-D-mannitol

aDepartamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil, bDepartment of Chemistry, State University of New York, College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA, and cChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222-1095, USA
*Correspondence e-mail: nazareay@buffalostate.edu

(Received 5 June 2011; accepted 8 June 2011; online 18 June 2011)

In the title compound, C20H24O5, the six-membered pyran­ose ring adopts a chair conformation. The dihedral angle between the planes of the phenyl groups of the benzyl substituents is 63.1°. Two types of inter­molecular O—H⋯O hydrogen bonds lead to the formation of infinite chains along the b axis. Only weak C—H⋯O contacts exist between neighboring chains.

Related literature

For syntheses of this and similar compounds, see: Barker (1970[Barker, R. (1970). J. Org. Chem. 35, 461-464.]); Doboszewski (1997[Doboszewski, B. (1997). Nucleosides Nucleotides, 16, 1049-1052.], 2009[Doboszewski, B. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 875-901.]); Doboszewski & de Siqueria (2010[Doboszewski, B. & de Siqueria, E. C. (2010). Synth. Commun. 40, 744-748.]); Hartman (1970a[Hartman, L. (1970a). US Patent 3484459.],b[Hartman, L. (1970b). US Patent 3480651.]). For related structures, see: Boeyens et al. (1983[Boeyens, J. C. A., Marais, J. L. C. & Perold, G. W. (1983). Phytochemistry, 22, 1959-1960.]); Doboszewski & Nazarenko (2003[Doboszewski, B. & Nazarenko, A. Y. (2003). Acta Cryst. E59, o158-o160.]); Guiry et al. (2008[Guiry, K. P., Coles, S. J., Moynihan, H. A. & Lawrence, S. E. (2008). Cryst. Growth Des. 8, 3927-3934.]); Hong et al. (2005[Hong, B.-C., Chen, Z.-Y., Nagarajan, A., Rudresha, K., Chavan, V., Chen, W.-H., Jiang, Y.-F., Zhang, S.-C., Lee, G.-H. & Sarshar, S. (2005). Tetrahedron Lett. 46, 1281-1285.]); Vidra et al. (1982[Vidra, I., Simon, K., Institoris, L., Csoregh, I. & Czugler, M. (1982). Carbohydr. Res. 111, 41-57.]). For conformations of six-membered rings, see: Schwarz (1973[Schwarz, J. C. P. (1973). J. Chem. Soc. Chem. Commun. pp. 505-508.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boeyens & Dobson (1987[Boeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles. Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2-102. Amsterdam: Elsevier.]). For hydrogen bonding in carbohydrate chemistry, see Gilli & Gilli (2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Oxford University Press.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]), and references therein.

[Scheme 1]

Experimental

Crystal data
  • C20H24O5

  • Mr = 344.39

  • Monoclinic, P 21

  • a = 5.6584 (10) Å

  • b = 7.9610 (12) Å

  • c = 19.808 (4) Å

  • β = 91.968 (6)°

  • V = 891.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.6 × 0.4 × 0.05 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.91, Tmax = 0.98

  • 8624 measured reflections

  • 1695 independent reflections

  • 1458 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 0.99

  • 1695 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.84 1.95 2.789 (2) 175
O5—H5⋯O2i 0.84 1.98 2.812 (2) 169
C6—H6B⋯O5ii 0.99 2.54 3.461 (3) 155
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: GIS (Bruker, 2010[Bruker (2010). APEX2 and GIS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and GIS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP in SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A target compound of our (BD and ECS) synthetic research, 2,5-anhydro-D-glucitol (compound 2 in Fig. 1) is technically a β-C-glycoside of D-arabinofuranose. We prepared it in its protected form 4 starting from 2,3,5-tri-O-benzyl-D-arabinofuranosyl chloride or bromide (Doboszewski, 1997, 2009). The structure of 4 was confirmed by X-ray crystallography (Doboszewski & Nazarenko, 2003). Since this procedure furnished low and variable yields, we focused our attention on an alternative method, i.e. acid-catalyzed dehydration of D-mannitol 1 (Barker, 1970; Hartman, 1970a,b; Doboszewski & de Siqueria, 2010). The original patented procedure (Hartman, 1970a,b) was modified by using vacuum-dry chromatography to isolate the acetonide 4, which was subsequently used to obtain the corresponding di-O-benzyl derivative 8 (Doboszewski, 1997). During the synthesis of 8 at a ca 30 g scale (see Fig. 1) we have noticed the presence of a minor byproduct which is more polar than the expected 8. This compound was formed in a very low yield (ca 1%) and its 1H NMR spectrum was practically intractable and showed an aromatic:aliphatic H atom ratio of 1:1.4. Using single-crystal X-ray diffraction (this present study) it was identified as 2,6-anhydro-1,3-di-O-benzyl-D-mannitol 9. Evidently, the main cyclization route to form 2,5-anhydro-D-glucitol 2 was accompanied by a minor pathway to form 3 together with other dehydration products (Barker, 1970). Both acetonides 4 and 5 migrated jointly during chromatography, but become separable after transformation into the corresponding di-benzyl ethers 8 and 9, respectively (Fig. 1).

The absolute structure of the title compound is known from the synthetic route which does not affect stereogenic atoms of the starting D-mannitol. In the crystal structure of title compound (Fig. 2), all bond lengths and bond angles have standard dimensions. The high flexibility of the oxymethylene fragment results in elongated thermal ellipsoids of atoms O1 and C10.

The six-membered phenyl rings are flat within 0.01 Å. Fig. 3 shows that the pyranose ring adopts a chair conformation (Schwarz, 1973) with atoms C1, C2, C5, and C6 being within 0.01 Å from their mean plane, and atoms O1 and C4 at a distances of 0.68 and 0.64 Å. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. The polar parameters for the pyranose ring are Q = 0.576 (2) Å, Θ = 175.8 (2)°, and Φ = 207 (3)°. These suggest a chair conformation (ideal Θ = 0 or 180°) only slightly distorted towards half-chair (Θ = 130°, Φ = 210°). There are four compounds reported in Cambridge Structure Database with the same motif: 1,5-anhydro-DL-galactitol (refcode ANGALA10, Vidra et al., 1982) 1,5-anhydro-D-glucitol (CELTUI, Boeyens et al., 1983), (+)-ethyl-3-(acetoxy)-4,5-dihydroxytetrahydro-2H-pyran-2-carboxylate (FIQWAE, Hong et al., 2005) and 1-deoxy-D-lactose (XOJLUE, Guiry et al., 2008). In all these structures, the six-membered ring has a chair conformation.

Two hydroxy groups and an O atom of the pyranose ring form a system of O—H··· O hydrogen bonds that leads to the formation of an infinitive chain along the b axis (Table 1, Fig. 4). These hydrogen bonds of intermediate strength (Gilli & Gilli, 2009) result in a decrease of the O—H stretching vibrations frequency from the theoretical 3500 cm-1 for a "free" OH group to 3330 cm-1.

Only weak C—H···O (Table 1) contacts exist between neighboring chains. Similar bonds were observed in various carbohydrates (Desiraju & Steiner, 1999). A short intramolecular contact between oxygen O3 and H atom H1A of neighboring methylene group may additionally stabilize the conformation of the molecule.

Related literature top

For syntheses of this and similar compounds, see: Barker (1970); Doboszewski (1997, 2009); Doboszewski & de Siqueria (2010); Hartman (1970a,b). For related structures, see: Boeyens et al. (1983); Doboszewski & Nazarenko (2003); Guiry et al. (2008); Hong et al. (2005); Vidra et al. (1982). For conformations of six-membered rings, see: Schwarz (1973); Cremer & Pople (1975); Boeyens & Dobson (1987). For hydrogen bonding in carbohydrate chemistry, see Gilli & Gilli (2009); Desiraju & Steiner (1999); Jeffrey (1997), and references therein.

Experimental top

Crystals of the title compound were obtained as a side product of dehydration of D-mannitol (Fig. 1) in the form of thin plates (m.p. 454 (3) K) by spontaneous crystallization after chromatographic separation using a gradient of ethylacetate in hexane. A suitable crystal was cut out of a larger plate. Data collection was limited to θ = 25° because of the geometry of the instrument.

Exact mass MS (ESI): calc. for C20H24O5 +Na+: 367.1516; found 367.1507.

Optical rotation: αD +7.4° c 2.6 (DMSO)

1H NMR (300 MHz, DMSO-d6): 7.37–7.25 (H aromatic, 10H), 4.86 (d, J = 6.3 Hz, 1H, exchangeable), 4.83 (d, J = 11.1 Hz, 1H), 4.65 (d, J = 3.6 Hz, exchangeable), 4.51 (d, J = 11.6 Hz, 2H), 4.44 (d, J = 12.1 Hz, 1H), 3.76–3.39 (unresolved, 7H), 3.27–3.21 (unresolved, 1H).

13C NMR: 139.02, 138.42, 128.21, 128.10, 127.63, 127.39, 127.28, 78.66, 75.98, 74.36, 73.76, 72.33,* 69.77,* 69.69,* 69.29 (* negative signals in the Attached Proton Test).

FT–IR (Nicolet 400, diamond ATR): 3330 (very strong), 3064, 3033, 2916, 2862, 1495, 1452, 1328, 1082, 1067, 890, 692, 606, 530 cm-1.

Raman (Raman Systems 2.0; 785 nm laser): 1603, 1466, 1342, 1278, 1202, 1174, 1004 (very strong), 945, 821, 617, 431, 186 cm-1.

Refinement top

The chirality of the title compound was known from the synthetic route. Therefore, Friedel pairs were treated as equivalents at data processing and were merged at refinement. Reflection 0 0 1 was obstructed by the beam stop and was omitted.

All H atoms were positioned geometrically with Uiso(H) = 1.2 or 1.5Ueq(C) with refined torsion angles for H4 and H5 (AFIX 147 command in SHELXL (Sheldrick, 2008a)).

Computing details top

Data collection: GIS (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010) and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009) and XPREP in SHELXTL (Sheldrick, 2008a); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Two possibilities of dehydration of D-mannitol relevant to the synthesis of 1,5-anhydro-D-mannitol and formation of the dibenzyl ethers.
[Figure 2] Fig. 2. ORTEP view of 1,5-anhydro-4,6-di-O-benzyl-D-mannitol with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. Chair conformation of the six-membered ring.
[Figure 4] Fig. 4. Infinitive chain of 2,6-anhydro-1,3-di-O-benzyl-D-mannitol molecules along the b axis. View along the a axis.
[Figure 5] Fig. 5. Additional figure.
2,6-Anhydro-1,3-di-O-benzyl-D-mannitol top
Crystal data top
C20H24O5F(000) = 368
Mr = 344.39Dx = 1.283 Mg m3
Monoclinic, P21Melting point: 454(3) K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.6584 (10) ÅCell parameters from 2505 reflections
b = 7.9610 (12) Åθ = 2.1–25.0°
c = 19.808 (4) ŵ = 0.09 mm1
β = 91.968 (6)°T = 200 K
V = 891.8 (3) Å3Plate, colourless
Z = 20.6 × 0.4 × 0.05 mm
Data collection top
Bruker SMART X2S
diffractometer
1695 independent reflections
Radiation source: XOS X-beam microfocus source1458 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.052
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 66
Tmin = 0.91, Tmax = 0.98k = 99
8624 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0509P)2]
where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C20H24O5V = 891.8 (3) Å3
Mr = 344.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.6584 (10) ŵ = 0.09 mm1
b = 7.9610 (12) ÅT = 200 K
c = 19.808 (4) Å0.6 × 0.4 × 0.05 mm
β = 91.968 (6)°
Data collection top
Bruker SMART X2S
diffractometer
1695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
1458 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.98Rint = 0.052
8624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.082H-atom parameters constrained
S = 0.99Δρmax = 0.19 e Å3
1695 reflectionsΔρmin = 0.14 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5054 (4)0.6502 (3)0.64947 (9)0.0699 (7)
O20.6876 (3)0.44181 (18)0.54580 (7)0.0288 (4)
O30.8458 (3)0.2160 (2)0.70085 (7)0.0329 (4)
O41.0068 (3)0.0091 (2)0.59915 (8)0.0389 (4)
H40.98840.09250.57350.047*
O51.0291 (3)0.2171 (2)0.48840 (8)0.0311 (4)
H51.11870.13410.48360.037*
C10.7134 (5)0.5512 (3)0.65761 (12)0.0426 (7)
H1A0.74020.52080.70570.051*
H1B0.85230.61510.64270.051*
C20.6801 (4)0.3952 (3)0.61547 (11)0.0296 (5)
H2A0.52060.34710.62400.036*
C30.8671 (4)0.2607 (3)0.63147 (10)0.0272 (5)
H3A1.02840.30720.62410.033*
C40.8223 (4)0.1094 (3)0.58552 (10)0.0285 (5)
H4A0.66890.05690.59760.034*
C50.8049 (4)0.1607 (3)0.51169 (11)0.0275 (5)
H5A0.75060.06210.48390.033*
C60.6287 (4)0.3020 (3)0.50228 (11)0.0311 (5)
H6A0.62610.33970.45460.037*
H6B0.46870.26060.51230.037*
C91.0627 (4)0.1952 (4)0.73746 (12)0.0466 (7)
H9A1.16980.28960.72740.056*
H9B1.13920.08970.72330.056*
C100.5053 (8)0.7934 (4)0.69327 (14)0.0781 (12)
H10A0.36830.86560.68070.094*
H10B0.65090.85960.68670.094*
C111.0226 (4)0.1894 (3)0.81204 (11)0.0358 (6)
C120.8296 (5)0.2669 (4)0.84079 (12)0.0436 (7)
H12A0.71500.32270.81270.052*
C130.8036 (5)0.2634 (4)0.90972 (13)0.0538 (8)
H13A0.67110.31620.92890.065*
C140.9691 (5)0.1834 (5)0.95082 (13)0.0595 (9)
H14A0.95160.18220.99830.071*
C151.1608 (5)0.1049 (4)0.92311 (13)0.0579 (8)
H15A1.27450.04880.95140.069*
C161.1858 (5)0.1086 (4)0.85404 (13)0.0464 (7)
H16A1.31770.05450.83510.056*
C210.4931 (5)0.7468 (4)0.76631 (13)0.0437 (7)
C220.3085 (5)0.6518 (4)0.79079 (15)0.0546 (8)
H22A0.18730.61200.76050.066*
C230.2996 (6)0.6149 (5)0.85879 (17)0.0656 (9)
H23A0.17290.54960.87500.079*
C240.4711 (7)0.6713 (5)0.90252 (15)0.0693 (10)
H24A0.46320.64630.94930.083*
C250.6537 (6)0.7633 (5)0.87996 (16)0.0699 (10)
H25A0.77290.80320.91090.084*
C260.6663 (5)0.7989 (4)0.81241 (16)0.0553 (8)
H26A0.79740.86090.79700.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1104 (18)0.0642 (16)0.0345 (10)0.0575 (15)0.0080 (10)0.0070 (10)
O20.0307 (9)0.0287 (10)0.0270 (8)0.0029 (7)0.0009 (6)0.0007 (7)
O30.0340 (8)0.0391 (10)0.0257 (7)0.0029 (8)0.0014 (6)0.0036 (7)
O40.0506 (11)0.0277 (10)0.0382 (9)0.0118 (9)0.0026 (7)0.0040 (7)
O50.0257 (8)0.0284 (10)0.0397 (9)0.0018 (7)0.0072 (6)0.0026 (7)
C10.0646 (18)0.0344 (16)0.0288 (13)0.0156 (14)0.0024 (11)0.0013 (11)
C20.0313 (13)0.0317 (14)0.0262 (11)0.0024 (11)0.0055 (9)0.0001 (10)
C30.0256 (11)0.0299 (14)0.0263 (11)0.0014 (10)0.0041 (8)0.0009 (10)
C40.0264 (12)0.0259 (13)0.0333 (12)0.0015 (11)0.0022 (9)0.0001 (10)
C50.0225 (11)0.0265 (13)0.0336 (12)0.0063 (10)0.0030 (9)0.0040 (10)
C60.0273 (12)0.0346 (14)0.0312 (12)0.0036 (11)0.0020 (9)0.0030 (11)
C90.0378 (13)0.066 (2)0.0357 (13)0.0138 (15)0.0003 (10)0.0026 (13)
C100.144 (3)0.050 (2)0.0422 (16)0.048 (2)0.0237 (18)0.0006 (14)
C110.0359 (13)0.0372 (16)0.0341 (12)0.0030 (12)0.0020 (10)0.0041 (11)
C120.0444 (15)0.0501 (18)0.0364 (13)0.0080 (14)0.0019 (10)0.0003 (12)
C130.0500 (17)0.067 (2)0.0445 (15)0.0013 (16)0.0104 (12)0.0051 (15)
C140.0630 (18)0.087 (3)0.0279 (13)0.006 (2)0.0005 (12)0.0018 (15)
C150.0548 (18)0.077 (2)0.0411 (16)0.0043 (18)0.0142 (13)0.0063 (16)
C160.0409 (15)0.0557 (18)0.0421 (15)0.0055 (14)0.0052 (11)0.0024 (13)
C210.0590 (17)0.0325 (16)0.0403 (13)0.0145 (14)0.0118 (12)0.0024 (12)
C220.0435 (16)0.057 (2)0.0626 (19)0.0016 (16)0.0069 (13)0.0192 (16)
C230.062 (2)0.064 (2)0.073 (2)0.0005 (18)0.0332 (17)0.0043 (19)
C240.078 (2)0.088 (3)0.0422 (16)0.030 (2)0.0101 (16)0.0052 (17)
C250.0581 (19)0.088 (3)0.062 (2)0.0231 (19)0.0177 (15)0.025 (2)
C260.0460 (17)0.0468 (18)0.074 (2)0.0019 (15)0.0154 (14)0.0077 (16)
Geometric parameters (Å, º) top
O1—C11.421 (3)C10—C211.498 (4)
O1—C101.433 (4)C10—H10A0.9900
O2—C21.431 (3)C10—H10B0.9900
O2—C61.440 (3)C11—C161.381 (3)
O3—C91.413 (3)C11—C121.393 (3)
O3—C31.429 (2)C12—C131.379 (3)
O4—C41.426 (3)C12—H12A0.9500
O4—H40.8400C13—C141.376 (4)
O5—C51.437 (2)C13—H13A0.9500
O5—H50.8400C14—C151.382 (4)
C1—C21.505 (3)C14—H14A0.9500
C1—H1A0.9900C15—C161.381 (3)
C1—H1B0.9900C15—H15A0.9500
C2—C31.531 (3)C16—H16A0.9500
C2—H2A1.0000C21—C261.381 (4)
C3—C41.526 (3)C21—C221.390 (4)
C3—H3A1.0000C22—C231.381 (4)
C4—C51.518 (3)C22—H22A0.9500
C4—H4A1.0000C23—C241.355 (5)
C5—C61.511 (3)C23—H23A0.9500
C5—H5A1.0000C24—C251.355 (5)
C6—H6A0.9900C24—H24A0.9500
C6—H6B0.9900C25—C261.372 (4)
C9—C111.503 (3)C25—H25A0.9500
C9—H9A0.9900C26—H26A0.9500
C9—H9B0.9900
C1—O1—C10113.0 (2)C11—C9—H9B109.6
C2—O2—C6111.27 (16)H9A—C9—H9B108.1
C9—O3—C3114.99 (16)O1—C10—C21112.9 (3)
C4—O4—H4109.5O1—C10—H10A109.0
C5—O5—H5109.5C21—C10—H10A109.0
O1—C1—C2107.9 (2)O1—C10—H10B109.0
O1—C1—H1A110.1C21—C10—H10B109.0
C2—C1—H1A110.1H10A—C10—H10B107.8
O1—C1—H1B110.1C16—C11—C12118.5 (2)
C2—C1—H1B110.1C16—C11—C9119.1 (2)
H1A—C1—H1B108.4C12—C11—C9122.4 (2)
O2—C2—C1108.3 (2)C13—C12—C11120.5 (2)
O2—C2—C3109.75 (16)C13—C12—H12A119.7
C1—C2—C3112.95 (19)C11—C12—H12A119.7
O2—C2—H2A108.6C14—C13—C12120.1 (3)
C1—C2—H2A108.6C14—C13—H13A119.9
C3—C2—H2A108.6C12—C13—H13A119.9
O3—C3—C4111.07 (18)C13—C14—C15120.1 (2)
O3—C3—C2107.03 (16)C13—C14—H14A119.9
C4—C3—C2109.23 (17)C15—C14—H14A119.9
O3—C3—H3A109.8C16—C15—C14119.5 (3)
C4—C3—H3A109.8C16—C15—H15A120.2
C2—C3—H3A109.8C14—C15—H15A120.2
O4—C4—C5112.53 (17)C15—C16—C11121.2 (3)
O4—C4—C3107.68 (17)C15—C16—H16A119.4
C5—C4—C3111.47 (19)C11—C16—H16A119.4
O4—C4—H4A108.3C26—C21—C22117.3 (3)
C5—C4—H4A108.3C26—C21—C10120.6 (3)
C3—C4—H4A108.3C22—C21—C10122.1 (3)
O5—C5—C6108.29 (18)C23—C22—C21120.6 (3)
O5—C5—C4111.39 (17)C23—C22—H22A119.7
C6—C5—C4109.87 (17)C21—C22—H22A119.7
O5—C5—H5A109.1C24—C23—C22120.2 (3)
C6—C5—H5A109.1C24—C23—H23A119.9
C4—C5—H5A109.1C22—C23—H23A119.9
O2—C6—C5111.32 (16)C25—C24—C23120.4 (3)
O2—C6—H6A109.4C25—C24—H24A119.8
C5—C6—H6A109.4C23—C24—H24A119.8
O2—C6—H6B109.4C24—C25—C26120.0 (3)
C5—C6—H6B109.4C24—C25—H25A120.0
H6A—C6—H6B108.0C26—C25—H25A120.0
O3—C9—C11110.49 (18)C25—C26—C21121.6 (3)
O3—C9—H9A109.6C25—C26—H26A119.2
C11—C9—H9A109.6C21—C26—H26A119.2
O3—C9—H9B109.6
C10—O1—C1—C2173.3 (2)C3—O3—C9—C11166.6 (2)
C6—O2—C2—C1173.07 (19)C1—O1—C10—C2166.9 (4)
C6—O2—C2—C363.2 (2)O3—C9—C11—C16155.4 (3)
O1—C1—C2—O270.8 (2)O3—C9—C11—C1226.4 (4)
O1—C1—C2—C3167.49 (18)C16—C11—C12—C130.3 (4)
C9—O3—C3—C4102.6 (2)C9—C11—C12—C13177.8 (3)
C9—O3—C3—C2138.2 (2)C11—C12—C13—C140.2 (5)
O2—C2—C3—O3178.27 (18)C12—C13—C14—C150.7 (5)
C1—C2—C3—O360.8 (2)C13—C14—C15—C160.6 (5)
O2—C2—C3—C457.9 (2)C14—C15—C16—C110.0 (5)
C1—C2—C3—C4178.85 (19)C12—C11—C16—C150.4 (4)
O3—C3—C4—O465.4 (2)C9—C11—C16—C15177.8 (3)
C2—C3—C4—O4176.82 (17)O1—C10—C21—C26122.6 (3)
O3—C3—C4—C5170.75 (16)O1—C10—C21—C2258.1 (4)
C2—C3—C4—C552.9 (2)C26—C21—C22—C231.1 (4)
O4—C4—C5—O552.7 (2)C10—C21—C22—C23178.3 (3)
C3—C4—C5—O568.4 (2)C21—C22—C23—C240.2 (5)
O4—C4—C5—C6172.71 (18)C22—C23—C24—C250.5 (5)
C3—C4—C5—C651.6 (2)C23—C24—C25—C260.4 (5)
C2—O2—C6—C562.4 (2)C24—C25—C26—C211.7 (5)
O5—C5—C6—O266.5 (2)C22—C21—C26—C252.0 (4)
C4—C5—C6—O255.3 (2)C10—C21—C26—C25177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.841.952.789 (2)175
O5—H5···O2i0.841.982.812 (2)169
C1—H1A···O30.992.502.893 (3)103
C6—H6B···O5ii0.992.543.461 (3)155
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H24O5
Mr344.39
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)5.6584 (10), 7.9610 (12), 19.808 (4)
β (°) 91.968 (6)
V3)891.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.4 × 0.05
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.91, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
8624, 1695, 1458
Rint0.052
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 0.99
No. of reflections1695
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: GIS (Bruker, 2010), APEX2 (Bruker, 2010) and SAINT (Bruker, 2009), SAINT (Bruker, 2009) and XPREP in SHELXTL (Sheldrick, 2008a), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.841.952.789 (2)175
O5—H5···O2i0.841.982.812 (2)169
C1—H1A···O30.992.502.893 (3)103
C6—H6B···O5ii0.992.543.461 (3)155
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x1, y, z.
 

Acknowledgements

This study was supported by a grant for the X-ray diffractometer and by SUNY grant No. 1073053. AYN thanks Dr Bruce Noll (Bruker AXS) for useful advice in operating the X2S diffractometer, and Dr David Geiger (SUNY Geneseo) for help with the experiment.

References

First citationBarker, R. (1970). J. Org. Chem. 35, 461–464.  CrossRef CAS Google Scholar
First citationBoeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles. Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2–102. Amsterdam: Elsevier.  Google Scholar
First citationBoeyens, J. C. A., Marais, J. L. C. & Perold, G. W. (1983). Phytochemistry, 22, 1959–1960.  CrossRef CAS Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and GIS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationDoboszewski, B. (1997). Nucleosides Nucleotides, 16, 1049–1052.  CrossRef CAS Web of Science Google Scholar
First citationDoboszewski, B. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 875–901.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDoboszewski, B. & de Siqueria, E. C. (2010). Synth. Commun. 40, 744–748.  CrossRef CAS Google Scholar
First citationDoboszewski, B. & Nazarenko, A. Y. (2003). Acta Cryst. E59, o158–o160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Oxford University Press.  Google Scholar
First citationGuiry, K. P., Coles, S. J., Moynihan, H. A. & Lawrence, S. E. (2008). Cryst. Growth Des. 8, 3927–3934.  Web of Science CSD CrossRef CAS Google Scholar
First citationHartman, L. (1970a). US Patent 3484459.  Google Scholar
First citationHartman, L. (1970b). US Patent 3480651.  Google Scholar
First citationHong, B.-C., Chen, Z.-Y., Nagarajan, A., Rudresha, K., Chavan, V., Chen, W.-H., Jiang, Y.-F., Zhang, S.-C., Lee, G.-H. & Sarshar, S. (2005). Tetrahedron Lett. 46, 1281–1285.  CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwarz, J. C. P. (1973). J. Chem. Soc. Chem. Commun. pp. 505–508.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVidra, I., Simon, K., Institoris, L., Csoregh, I. & Czugler, M. (1982). Carbohydr. Res. 111, 41–57.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1653-o1654
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds