organic compounds
2,6-Anhydro-1,3-di-O-benzyl-D-mannitol
aDepartamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil, bDepartment of Chemistry, State University of New York, College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA, and cChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222-1095, USA
*Correspondence e-mail: nazareay@buffalostate.edu
In the title compound, C20H24O5, the six-membered pyranose ring adopts a chair conformation. The dihedral angle between the planes of the phenyl groups of the benzyl substituents is 63.1°. Two types of intermolecular O—H⋯O hydrogen bonds lead to the formation of infinite chains along the b axis. Only weak C—H⋯O contacts exist between neighboring chains.
Related literature
For syntheses of this and similar compounds, see: Barker (1970); Doboszewski (1997, 2009); Doboszewski & de Siqueria (2010); Hartman (1970a,b). For related structures, see: Boeyens et al. (1983); Doboszewski & Nazarenko (2003); Guiry et al. (2008); Hong et al. (2005); Vidra et al. (1982). For conformations of six-membered rings, see: Schwarz (1973); Cremer & Pople (1975); Boeyens & Dobson (1987). For hydrogen bonding in carbohydrate chemistry, see Gilli & Gilli (2009); Desiraju & Steiner (1999); Jeffrey (1997), and references therein.
Experimental
Crystal data
|
Refinement
|
Data collection: GIS (Bruker, 2010); cell APEX2 (Bruker, 2010) and SAINT (Bruker, 2009); data reduction: SAINT and XPREP in SHELXTL (Sheldrick, 2008a); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811022306/zl2379sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811022306/zl2379Isup2.hkl
Crystals of the title compound were obtained as a side product of dehydration of D-mannitol (Fig. 1) in the form of thin plates (m.p. 454 (3) K) by spontaneous crystallization after chromatographic separation using a gradient of ethylacetate in hexane. A suitable crystal was cut out of a larger plate. Data collection was limited to θ = 25° because of the geometry of the instrument.
Exact mass MS (ESI): calc. for C20H24O5 +Na+: 367.1516; found 367.1507.
Optical rotation: αD +7.4° c 2.6 (DMSO)
1H NMR (300 MHz, DMSO-d6): 7.37–7.25 (H aromatic, 10H), 4.86 (d, J = 6.3 Hz, 1H, exchangeable), 4.83 (d, J = 11.1 Hz, 1H), 4.65 (d, J = 3.6 Hz, exchangeable), 4.51 (d, J = 11.6 Hz, 2H), 4.44 (d, J = 12.1 Hz, 1H), 3.76–3.39 (unresolved, 7H), 3.27–3.21 (unresolved, 1H).
13C NMR: 139.02, 138.42, 128.21, 128.10, 127.63, 127.39, 127.28, 78.66, 75.98, 74.36, 73.76, 72.33,* 69.77,* 69.69,* 69.29 (* negative signals in the Attached Proton Test).
FT–IR (Nicolet 400, diamond ATR): 3330 (very strong), 3064, 3033, 2916, 2862, 1495, 1452, 1328, 1082, 1067, 890, 692, 606, 530 cm-1.
Raman (Raman Systems 2.0; 785 nm laser): 1603, 1466, 1342, 1278, 1202, 1174, 1004 (very strong), 945, 821, 617, 431, 186 cm-1.
The
of the title compound was known from the synthetic route. Therefore, Friedel pairs were treated as equivalents at data processing and were merged at Reflection 0 0 1 was obstructed by the beam stop and was omitted.All H atoms were positioned geometrically with Uiso(H) = 1.2 or 1.5Ueq(C) with refined torsion angles for H4 and H5 (AFIX 147 command in SHELXL (Sheldrick, 2008a)).
Data collection: GIS (Bruker, 2010); cell
APEX2 (Bruker, 2010) and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009) and XPREP in SHELXTL (Sheldrick, 2008a); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C20H24O5 | F(000) = 368 |
Mr = 344.39 | Dx = 1.283 Mg m−3 |
Monoclinic, P21 | Melting point: 454(3) K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6584 (10) Å | Cell parameters from 2505 reflections |
b = 7.9610 (12) Å | θ = 2.1–25.0° |
c = 19.808 (4) Å | µ = 0.09 mm−1 |
β = 91.968 (6)° | T = 200 K |
V = 891.8 (3) Å3 | Plate, colourless |
Z = 2 | 0.6 × 0.4 × 0.05 mm |
Bruker SMART X2S diffractometer | 1695 independent reflections |
Radiation source: XOS X-beam microfocus source | 1458 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.052 |
ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) | h = −6→6 |
Tmin = 0.91, Tmax = 0.98 | k = −9→9 |
8624 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0509P)2] where P = (Fo2 + 2Fc2)/3 |
1695 reflections | (Δ/σ)max < 0.001 |
228 parameters | Δρmax = 0.19 e Å−3 |
1 restraint | Δρmin = −0.14 e Å−3 |
C20H24O5 | V = 891.8 (3) Å3 |
Mr = 344.39 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.6584 (10) Å | µ = 0.09 mm−1 |
b = 7.9610 (12) Å | T = 200 K |
c = 19.808 (4) Å | 0.6 × 0.4 × 0.05 mm |
β = 91.968 (6)° |
Bruker SMART X2S diffractometer | 1695 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) | 1458 reflections with I > 2σ(I) |
Tmin = 0.91, Tmax = 0.98 | Rint = 0.052 |
8624 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 1 restraint |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.19 e Å−3 |
1695 reflections | Δρmin = −0.14 e Å−3 |
228 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5054 (4) | 0.6502 (3) | 0.64947 (9) | 0.0699 (7) | |
O2 | 0.6876 (3) | 0.44181 (18) | 0.54580 (7) | 0.0288 (4) | |
O3 | 0.8458 (3) | 0.2160 (2) | 0.70085 (7) | 0.0329 (4) | |
O4 | 1.0068 (3) | −0.0091 (2) | 0.59915 (8) | 0.0389 (4) | |
H4 | 0.9884 | −0.0925 | 0.5735 | 0.047* | |
O5 | 1.0291 (3) | 0.2171 (2) | 0.48840 (8) | 0.0311 (4) | |
H5 | 1.1187 | 0.1341 | 0.4836 | 0.037* | |
C1 | 0.7134 (5) | 0.5512 (3) | 0.65761 (12) | 0.0426 (7) | |
H1A | 0.7402 | 0.5208 | 0.7057 | 0.051* | |
H1B | 0.8523 | 0.6151 | 0.6427 | 0.051* | |
C2 | 0.6801 (4) | 0.3952 (3) | 0.61547 (11) | 0.0296 (5) | |
H2A | 0.5206 | 0.3471 | 0.6240 | 0.036* | |
C3 | 0.8671 (4) | 0.2607 (3) | 0.63147 (10) | 0.0272 (5) | |
H3A | 1.0284 | 0.3072 | 0.6241 | 0.033* | |
C4 | 0.8223 (4) | 0.1094 (3) | 0.58552 (10) | 0.0285 (5) | |
H4A | 0.6689 | 0.0569 | 0.5976 | 0.034* | |
C5 | 0.8049 (4) | 0.1607 (3) | 0.51169 (11) | 0.0275 (5) | |
H5A | 0.7506 | 0.0621 | 0.4839 | 0.033* | |
C6 | 0.6287 (4) | 0.3020 (3) | 0.50228 (11) | 0.0311 (5) | |
H6A | 0.6261 | 0.3397 | 0.4546 | 0.037* | |
H6B | 0.4687 | 0.2606 | 0.5123 | 0.037* | |
C9 | 1.0627 (4) | 0.1952 (4) | 0.73746 (12) | 0.0466 (7) | |
H9A | 1.1698 | 0.2896 | 0.7274 | 0.056* | |
H9B | 1.1392 | 0.0897 | 0.7233 | 0.056* | |
C10 | 0.5053 (8) | 0.7934 (4) | 0.69327 (14) | 0.0781 (12) | |
H10A | 0.3683 | 0.8656 | 0.6807 | 0.094* | |
H10B | 0.6509 | 0.8596 | 0.6867 | 0.094* | |
C11 | 1.0226 (4) | 0.1894 (3) | 0.81204 (11) | 0.0358 (6) | |
C12 | 0.8296 (5) | 0.2669 (4) | 0.84079 (12) | 0.0436 (7) | |
H12A | 0.7150 | 0.3227 | 0.8127 | 0.052* | |
C13 | 0.8036 (5) | 0.2634 (4) | 0.90972 (13) | 0.0538 (8) | |
H13A | 0.6711 | 0.3162 | 0.9289 | 0.065* | |
C14 | 0.9691 (5) | 0.1834 (5) | 0.95082 (13) | 0.0595 (9) | |
H14A | 0.9516 | 0.1822 | 0.9983 | 0.071* | |
C15 | 1.1608 (5) | 0.1049 (4) | 0.92311 (13) | 0.0579 (8) | |
H15A | 1.2745 | 0.0488 | 0.9514 | 0.069* | |
C16 | 1.1858 (5) | 0.1086 (4) | 0.85404 (13) | 0.0464 (7) | |
H16A | 1.3177 | 0.0545 | 0.8351 | 0.056* | |
C21 | 0.4931 (5) | 0.7468 (4) | 0.76631 (13) | 0.0437 (7) | |
C22 | 0.3085 (5) | 0.6518 (4) | 0.79079 (15) | 0.0546 (8) | |
H22A | 0.1873 | 0.6120 | 0.7605 | 0.066* | |
C23 | 0.2996 (6) | 0.6149 (5) | 0.85879 (17) | 0.0656 (9) | |
H23A | 0.1729 | 0.5496 | 0.8750 | 0.079* | |
C24 | 0.4711 (7) | 0.6713 (5) | 0.90252 (15) | 0.0693 (10) | |
H24A | 0.4632 | 0.6463 | 0.9493 | 0.083* | |
C25 | 0.6537 (6) | 0.7633 (5) | 0.87996 (16) | 0.0699 (10) | |
H25A | 0.7729 | 0.8032 | 0.9109 | 0.084* | |
C26 | 0.6663 (5) | 0.7989 (4) | 0.81241 (16) | 0.0553 (8) | |
H26A | 0.7974 | 0.8609 | 0.7970 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1104 (18) | 0.0642 (16) | 0.0345 (10) | 0.0575 (15) | −0.0080 (10) | −0.0070 (10) |
O2 | 0.0307 (9) | 0.0287 (10) | 0.0270 (8) | 0.0029 (7) | 0.0009 (6) | −0.0007 (7) |
O3 | 0.0340 (8) | 0.0391 (10) | 0.0257 (7) | 0.0029 (8) | 0.0014 (6) | 0.0036 (7) |
O4 | 0.0506 (11) | 0.0277 (10) | 0.0382 (9) | 0.0118 (9) | −0.0026 (7) | −0.0040 (7) |
O5 | 0.0257 (8) | 0.0284 (10) | 0.0397 (9) | 0.0018 (7) | 0.0072 (6) | 0.0026 (7) |
C1 | 0.0646 (18) | 0.0344 (16) | 0.0288 (13) | 0.0156 (14) | 0.0024 (11) | −0.0013 (11) |
C2 | 0.0313 (13) | 0.0317 (14) | 0.0262 (11) | 0.0024 (11) | 0.0055 (9) | 0.0001 (10) |
C3 | 0.0256 (11) | 0.0299 (14) | 0.0263 (11) | −0.0014 (10) | 0.0041 (8) | −0.0009 (10) |
C4 | 0.0264 (12) | 0.0259 (13) | 0.0333 (12) | −0.0015 (11) | 0.0022 (9) | −0.0001 (10) |
C5 | 0.0225 (11) | 0.0265 (13) | 0.0336 (12) | −0.0063 (10) | 0.0030 (9) | −0.0040 (10) |
C6 | 0.0273 (12) | 0.0346 (14) | 0.0312 (12) | −0.0036 (11) | −0.0020 (9) | −0.0030 (11) |
C9 | 0.0378 (13) | 0.066 (2) | 0.0357 (13) | 0.0138 (15) | 0.0003 (10) | −0.0026 (13) |
C10 | 0.144 (3) | 0.050 (2) | 0.0422 (16) | 0.048 (2) | 0.0237 (18) | 0.0006 (14) |
C11 | 0.0359 (13) | 0.0372 (16) | 0.0341 (12) | 0.0030 (12) | −0.0020 (10) | −0.0041 (11) |
C12 | 0.0444 (15) | 0.0501 (18) | 0.0364 (13) | 0.0080 (14) | 0.0019 (10) | −0.0003 (12) |
C13 | 0.0500 (17) | 0.067 (2) | 0.0445 (15) | 0.0013 (16) | 0.0104 (12) | −0.0051 (15) |
C14 | 0.0630 (18) | 0.087 (3) | 0.0279 (13) | −0.006 (2) | −0.0005 (12) | 0.0018 (15) |
C15 | 0.0548 (18) | 0.077 (2) | 0.0411 (16) | 0.0043 (18) | −0.0142 (13) | 0.0063 (16) |
C16 | 0.0409 (15) | 0.0557 (18) | 0.0421 (15) | 0.0055 (14) | −0.0052 (11) | −0.0024 (13) |
C21 | 0.0590 (17) | 0.0325 (16) | 0.0403 (13) | 0.0145 (14) | 0.0118 (12) | −0.0024 (12) |
C22 | 0.0435 (16) | 0.057 (2) | 0.0626 (19) | 0.0016 (16) | −0.0069 (13) | −0.0192 (16) |
C23 | 0.062 (2) | 0.064 (2) | 0.073 (2) | −0.0005 (18) | 0.0332 (17) | 0.0043 (19) |
C24 | 0.078 (2) | 0.088 (3) | 0.0422 (16) | 0.030 (2) | 0.0101 (16) | 0.0052 (17) |
C25 | 0.0581 (19) | 0.088 (3) | 0.062 (2) | 0.0231 (19) | −0.0177 (15) | −0.025 (2) |
C26 | 0.0460 (17) | 0.0468 (18) | 0.074 (2) | −0.0019 (15) | 0.0154 (14) | −0.0077 (16) |
O1—C1 | 1.421 (3) | C10—C21 | 1.498 (4) |
O1—C10 | 1.433 (4) | C10—H10A | 0.9900 |
O2—C2 | 1.431 (3) | C10—H10B | 0.9900 |
O2—C6 | 1.440 (3) | C11—C16 | 1.381 (3) |
O3—C9 | 1.413 (3) | C11—C12 | 1.393 (3) |
O3—C3 | 1.429 (2) | C12—C13 | 1.379 (3) |
O4—C4 | 1.426 (3) | C12—H12A | 0.9500 |
O4—H4 | 0.8400 | C13—C14 | 1.376 (4) |
O5—C5 | 1.437 (2) | C13—H13A | 0.9500 |
O5—H5 | 0.8400 | C14—C15 | 1.382 (4) |
C1—C2 | 1.505 (3) | C14—H14A | 0.9500 |
C1—H1A | 0.9900 | C15—C16 | 1.381 (3) |
C1—H1B | 0.9900 | C15—H15A | 0.9500 |
C2—C3 | 1.531 (3) | C16—H16A | 0.9500 |
C2—H2A | 1.0000 | C21—C26 | 1.381 (4) |
C3—C4 | 1.526 (3) | C21—C22 | 1.390 (4) |
C3—H3A | 1.0000 | C22—C23 | 1.381 (4) |
C4—C5 | 1.518 (3) | C22—H22A | 0.9500 |
C4—H4A | 1.0000 | C23—C24 | 1.355 (5) |
C5—C6 | 1.511 (3) | C23—H23A | 0.9500 |
C5—H5A | 1.0000 | C24—C25 | 1.355 (5) |
C6—H6A | 0.9900 | C24—H24A | 0.9500 |
C6—H6B | 0.9900 | C25—C26 | 1.372 (4) |
C9—C11 | 1.503 (3) | C25—H25A | 0.9500 |
C9—H9A | 0.9900 | C26—H26A | 0.9500 |
C9—H9B | 0.9900 | ||
C1—O1—C10 | 113.0 (2) | C11—C9—H9B | 109.6 |
C2—O2—C6 | 111.27 (16) | H9A—C9—H9B | 108.1 |
C9—O3—C3 | 114.99 (16) | O1—C10—C21 | 112.9 (3) |
C4—O4—H4 | 109.5 | O1—C10—H10A | 109.0 |
C5—O5—H5 | 109.5 | C21—C10—H10A | 109.0 |
O1—C1—C2 | 107.9 (2) | O1—C10—H10B | 109.0 |
O1—C1—H1A | 110.1 | C21—C10—H10B | 109.0 |
C2—C1—H1A | 110.1 | H10A—C10—H10B | 107.8 |
O1—C1—H1B | 110.1 | C16—C11—C12 | 118.5 (2) |
C2—C1—H1B | 110.1 | C16—C11—C9 | 119.1 (2) |
H1A—C1—H1B | 108.4 | C12—C11—C9 | 122.4 (2) |
O2—C2—C1 | 108.3 (2) | C13—C12—C11 | 120.5 (2) |
O2—C2—C3 | 109.75 (16) | C13—C12—H12A | 119.7 |
C1—C2—C3 | 112.95 (19) | C11—C12—H12A | 119.7 |
O2—C2—H2A | 108.6 | C14—C13—C12 | 120.1 (3) |
C1—C2—H2A | 108.6 | C14—C13—H13A | 119.9 |
C3—C2—H2A | 108.6 | C12—C13—H13A | 119.9 |
O3—C3—C4 | 111.07 (18) | C13—C14—C15 | 120.1 (2) |
O3—C3—C2 | 107.03 (16) | C13—C14—H14A | 119.9 |
C4—C3—C2 | 109.23 (17) | C15—C14—H14A | 119.9 |
O3—C3—H3A | 109.8 | C16—C15—C14 | 119.5 (3) |
C4—C3—H3A | 109.8 | C16—C15—H15A | 120.2 |
C2—C3—H3A | 109.8 | C14—C15—H15A | 120.2 |
O4—C4—C5 | 112.53 (17) | C15—C16—C11 | 121.2 (3) |
O4—C4—C3 | 107.68 (17) | C15—C16—H16A | 119.4 |
C5—C4—C3 | 111.47 (19) | C11—C16—H16A | 119.4 |
O4—C4—H4A | 108.3 | C26—C21—C22 | 117.3 (3) |
C5—C4—H4A | 108.3 | C26—C21—C10 | 120.6 (3) |
C3—C4—H4A | 108.3 | C22—C21—C10 | 122.1 (3) |
O5—C5—C6 | 108.29 (18) | C23—C22—C21 | 120.6 (3) |
O5—C5—C4 | 111.39 (17) | C23—C22—H22A | 119.7 |
C6—C5—C4 | 109.87 (17) | C21—C22—H22A | 119.7 |
O5—C5—H5A | 109.1 | C24—C23—C22 | 120.2 (3) |
C6—C5—H5A | 109.1 | C24—C23—H23A | 119.9 |
C4—C5—H5A | 109.1 | C22—C23—H23A | 119.9 |
O2—C6—C5 | 111.32 (16) | C25—C24—C23 | 120.4 (3) |
O2—C6—H6A | 109.4 | C25—C24—H24A | 119.8 |
C5—C6—H6A | 109.4 | C23—C24—H24A | 119.8 |
O2—C6—H6B | 109.4 | C24—C25—C26 | 120.0 (3) |
C5—C6—H6B | 109.4 | C24—C25—H25A | 120.0 |
H6A—C6—H6B | 108.0 | C26—C25—H25A | 120.0 |
O3—C9—C11 | 110.49 (18) | C25—C26—C21 | 121.6 (3) |
O3—C9—H9A | 109.6 | C25—C26—H26A | 119.2 |
C11—C9—H9A | 109.6 | C21—C26—H26A | 119.2 |
O3—C9—H9B | 109.6 | ||
C10—O1—C1—C2 | 173.3 (2) | C3—O3—C9—C11 | 166.6 (2) |
C6—O2—C2—C1 | −173.07 (19) | C1—O1—C10—C21 | −66.9 (4) |
C6—O2—C2—C3 | 63.2 (2) | O3—C9—C11—C16 | 155.4 (3) |
O1—C1—C2—O2 | 70.8 (2) | O3—C9—C11—C12 | −26.4 (4) |
O1—C1—C2—C3 | −167.49 (18) | C16—C11—C12—C13 | 0.3 (4) |
C9—O3—C3—C4 | 102.6 (2) | C9—C11—C12—C13 | −177.8 (3) |
C9—O3—C3—C2 | −138.2 (2) | C11—C12—C13—C14 | 0.2 (5) |
O2—C2—C3—O3 | −178.27 (18) | C12—C13—C14—C15 | −0.7 (5) |
C1—C2—C3—O3 | 60.8 (2) | C13—C14—C15—C16 | 0.6 (5) |
O2—C2—C3—C4 | −57.9 (2) | C14—C15—C16—C11 | 0.0 (5) |
C1—C2—C3—C4 | −178.85 (19) | C12—C11—C16—C15 | −0.4 (4) |
O3—C3—C4—O4 | −65.4 (2) | C9—C11—C16—C15 | 177.8 (3) |
C2—C3—C4—O4 | 176.82 (17) | O1—C10—C21—C26 | 122.6 (3) |
O3—C3—C4—C5 | 170.75 (16) | O1—C10—C21—C22 | −58.1 (4) |
C2—C3—C4—C5 | 52.9 (2) | C26—C21—C22—C23 | 1.1 (4) |
O4—C4—C5—O5 | −52.7 (2) | C10—C21—C22—C23 | −178.3 (3) |
C3—C4—C5—O5 | 68.4 (2) | C21—C22—C23—C24 | 0.2 (5) |
O4—C4—C5—C6 | −172.71 (18) | C22—C23—C24—C25 | −0.5 (5) |
C3—C4—C5—C6 | −51.6 (2) | C23—C24—C25—C26 | −0.4 (5) |
C2—O2—C6—C5 | −62.4 (2) | C24—C25—C26—C21 | 1.7 (5) |
O5—C5—C6—O2 | −66.5 (2) | C22—C21—C26—C25 | −2.0 (4) |
C4—C5—C6—O2 | 55.3 (2) | C10—C21—C26—C25 | 177.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O5i | 0.84 | 1.95 | 2.789 (2) | 175 |
O5—H5···O2i | 0.84 | 1.98 | 2.812 (2) | 169 |
C1—H1A···O3 | 0.99 | 2.50 | 2.893 (3) | 103 |
C6—H6B···O5ii | 0.99 | 2.54 | 3.461 (3) | 155 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H24O5 |
Mr | 344.39 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 200 |
a, b, c (Å) | 5.6584 (10), 7.9610 (12), 19.808 (4) |
β (°) | 91.968 (6) |
V (Å3) | 891.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.6 × 0.4 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART X2S diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008b) |
Tmin, Tmax | 0.91, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8624, 1695, 1458 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.082, 0.99 |
No. of reflections | 1695 |
No. of parameters | 228 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.14 |
Computer programs: GIS (Bruker, 2010), APEX2 (Bruker, 2010) and SAINT (Bruker, 2009), SAINT (Bruker, 2009) and XPREP in SHELXTL (Sheldrick, 2008a), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O5i | 0.84 | 1.95 | 2.789 (2) | 175 |
O5—H5···O2i | 0.84 | 1.98 | 2.812 (2) | 169 |
C1—H1A···O3 | 0.99 | 2.50 | 2.893 (3) | 103 |
C6—H6B···O5ii | 0.99 | 2.54 | 3.461 (3) | 155 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x−1, y, z. |
Acknowledgements
This study was supported by a grant for the X-ray diffractometer and by SUNY grant No. 1073053. AYN thanks Dr Bruce Noll (Bruker AXS) for useful advice in operating the X2S diffractometer, and Dr David Geiger (SUNY Geneseo) for help with the experiment.
References
Barker, R. (1970). J. Org. Chem. 35, 461–464. CrossRef CAS Google Scholar
Boeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles. Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2–102. Amsterdam: Elsevier. Google Scholar
Boeyens, J. C. A., Marais, J. L. C. & Perold, G. W. (1983). Phytochemistry, 22, 1959–1960. CrossRef CAS Google Scholar
Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and GIS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press. Google Scholar
Doboszewski, B. (1997). Nucleosides Nucleotides, 16, 1049–1052. CrossRef CAS Web of Science Google Scholar
Doboszewski, B. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 875–901. Web of Science CrossRef CAS PubMed Google Scholar
Doboszewski, B. & de Siqueria, E. C. (2010). Synth. Commun. 40, 744–748. CrossRef CAS Google Scholar
Doboszewski, B. & Nazarenko, A. Y. (2003). Acta Cryst. E59, o158–o160. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Oxford University Press. Google Scholar
Guiry, K. P., Coles, S. J., Moynihan, H. A. & Lawrence, S. E. (2008). Cryst. Growth Des. 8, 3927–3934. Web of Science CSD CrossRef CAS Google Scholar
Hartman, L. (1970a). US Patent 3484459. Google Scholar
Hartman, L. (1970b). US Patent 3480651. Google Scholar
Hong, B.-C., Chen, Z.-Y., Nagarajan, A., Rudresha, K., Chavan, V., Chen, W.-H., Jiang, Y.-F., Zhang, S.-C., Lee, G.-H. & Sarshar, S. (2005). Tetrahedron Lett. 46, 1281–1285. CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwarz, J. C. P. (1973). J. Chem. Soc. Chem. Commun. pp. 505–508. CrossRef Google Scholar
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vidra, I., Simon, K., Institoris, L., Csoregh, I. & Czugler, M. (1982). Carbohydr. Res. 111, 41–57. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A target compound of our (BD and ECS) synthetic research, 2,5-anhydro-D-glucitol (compound 2 in Fig. 1) is technically a β-C-glycoside of D-arabinofuranose. We prepared it in its protected form 4 starting from 2,3,5-tri-O-benzyl-D-arabinofuranosyl chloride or bromide (Doboszewski, 1997, 2009). The structure of 4 was confirmed by X-ray crystallography (Doboszewski & Nazarenko, 2003). Since this procedure furnished low and variable yields, we focused our attention on an alternative method, i.e. acid-catalyzed dehydration of D-mannitol 1 (Barker, 1970; Hartman, 1970a,b; Doboszewski & de Siqueria, 2010). The original patented procedure (Hartman, 1970a,b) was modified by using vacuum-dry chromatography to isolate the acetonide 4, which was subsequently used to obtain the corresponding di-O-benzyl derivative 8 (Doboszewski, 1997). During the synthesis of 8 at a ca 30 g scale (see Fig. 1) we have noticed the presence of a minor byproduct which is more polar than the expected 8. This compound was formed in a very low yield (ca 1%) and its 1H NMR spectrum was practically intractable and showed an aromatic:aliphatic H atom ratio of 1:1.4. Using single-crystal X-ray diffraction (this present study) it was identified as 2,6-anhydro-1,3-di-O-benzyl-D-mannitol 9. Evidently, the main cyclization route to form 2,5-anhydro-D-glucitol 2 was accompanied by a minor pathway to form 3 together with other dehydration products (Barker, 1970). Both acetonides 4 and 5 migrated jointly during chromatography, but become separable after transformation into the corresponding di-benzyl ethers 8 and 9, respectively (Fig. 1).
The absolute structure of the title compound is known from the synthetic route which does not affect stereogenic atoms of the starting D-mannitol. In the crystal structure of title compound (Fig. 2), all bond lengths and bond angles have standard dimensions. The high flexibility of the oxymethylene fragment results in elongated thermal ellipsoids of atoms O1 and C10.
The six-membered phenyl rings are flat within 0.01 Å. Fig. 3 shows that the pyranose ring adopts a chair conformation (Schwarz, 1973) with atoms C1, C2, C5, and C6 being within 0.01 Å from their mean plane, and atoms O1 and C4 at a distances of 0.68 and 0.64 Å. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. The polar parameters for the pyranose ring are Q = 0.576 (2) Å, Θ = 175.8 (2)°, and Φ = 207 (3)°. These suggest a chair conformation (ideal Θ = 0 or 180°) only slightly distorted towards half-chair (Θ = 130°, Φ = 210°). There are four compounds reported in Cambridge Structure Database with the same motif: 1,5-anhydro-DL-galactitol (refcode ANGALA10, Vidra et al., 1982) 1,5-anhydro-D-glucitol (CELTUI, Boeyens et al., 1983), (+)-ethyl-3-(acetoxy)-4,5-dihydroxytetrahydro-2H-pyran-2-carboxylate (FIQWAE, Hong et al., 2005) and 1-deoxy-D-lactose (XOJLUE, Guiry et al., 2008). In all these structures, the six-membered ring has a chair conformation.
Two hydroxy groups and an O atom of the pyranose ring form a system of O—H··· O hydrogen bonds that leads to the formation of an infinitive chain along the b axis (Table 1, Fig. 4). These hydrogen bonds of intermediate strength (Gilli & Gilli, 2009) result in a decrease of the O—H stretching vibrations frequency from the theoretical 3500 cm-1 for a "free" OH group to 3330 cm-1.
Only weak C—H···O (Table 1) contacts exist between neighboring chains. Similar bonds were observed in various carbohydrates (Desiraju & Steiner, 1999). A short intramolecular contact between oxygen O3 and H atom H1A of neighboring methylene group may additionally stabilize the conformation of the molecule.