metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-benzoato-κ3O,O′:O′;κ3O:O,O′-bis­­[(benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)cadmium]

aSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com

(Received 22 May 2011; accepted 8 June 2011; online 18 June 2011)

The dinuclear title compound, [Cd2(C7H5O2)4(C12H8N2)2], lies on a crystallographic twofold axis. The CdII ions are connected by two bridging benzoate anions and each ion is seven-coordinated by five O atoms from three benzoate ligands and by two N atoms from 1,10-phenanthroline. The benzoate ligands adopt two different coordination modes, acting as bidentate and bridging tridentate ligands. The discrete neutral mol­ecules further extend their structure into a three-dimensional supra­molecular framework by inter­molecular ππ [inter­planar distances of 3.392 (4) Å] and C—H⋯π stacking inter­actions [H–mean plane = 2.567 (4) and 2.781 (4) Å].

Related literature

For the structures and properties of cadmium compounds, see: Gu et al. (2007[Gu, J. Z., Lu, W. G., Zhou, H. C. & Lu, T. B. (2007). Inorg. Chem. 46, 5835-5837.], 2011[Gu, J. Z., Lv, D. Y., Gao, Z. Q., Liu, J. Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675-683.]). For bond lengths and angles in related lead(II) compounds, see: Gu et al. (2011[Gu, J. Z., Lv, D. Y., Gao, Z. Q., Liu, J. Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675-683.]); Shi et al. (2008[Shi, Q.-Y., Li, Z.-C., Cheng, Z.-S., Tan, J.-B. & Liu, J.-L. (2008). Acta Cryst. E64, m1458.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C7H5O2)4(C12H8N2)2]

  • Mr = 1069.65

  • Monoclinic, C 2/c

  • a = 21.90 (2) Å

  • b = 10.023 (11) Å

  • c = 20.52 (2) Å

  • β = 103.759 (10)°

  • V = 4376 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 296 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.761, Tmax = 0.789

  • 15316 measured reflections

  • 4068 independent reflections

  • 3002 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.093

  • S = 1.12

  • 4068 reflections

  • 286 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Transition metal compounds have shown not only versatile architectures but also desirable properties, e.g. luminescent, magnetic, catalytic, and gas absorption and separation properties (Gu et al., 2007; 2011). In order to extend our investigations in this field, we designed and synthesized one dinuclear cadmium(II) compound, [Cd2(C7H5O2)4(C12H8N2)2], and report its structure here.

The asymmetric unit of the title complex (Fig. 1) contains one CdII ion, two benzoate ligands, and one 1,10-phenanthroline molecule. Each CdII is seven-coordinate by five O atoms from three benzoate ligands, and two N atoms from 1,10-phenanthroline, and the coordination geometry around the CdII ion may be described as a distorted mono-capped trigonal prism. Two adjacent CdII units are connected by two bridging benzoate anions to generate a dinuclear complex. The dinuclear molecule lies on a crystallgraphic two-fold axis. The benzoate ligands adopt two different coordination modes acting as bidentate and bridging tridentate ligands.

The Cd—N bond distances of 2.347 (4) and 2.375 (4) Å and the Cd—O bond distances in the range of 2.265 (4)–2.493 (4) Å, are comparable to those reported for other CdII—O and CdII–N donor complexes (Gu et al., 2011; Shi et al., 2008).

In the crystal structure, ππ stacking interactions between adjacent 1,10-phenanthroline ligands are observed with interplanar distances of 3.392 (4) Å. Furthermore, adjacent benzene rings from benzoate ligands are involved in C—H···π stacking interactions (H—mean plane = 2.567 (4) Å). C–H···π stacking interactions between benzene rings from benzoate ligands and 1,10-phenanthroline ligands are also observed (H—mean plane = 2.781 (4) Å) . The discrete neutral molecules further extend their structure into a three-dimensional supramolecular framework by intermolecular ππ stacking interactions (Fig. 2).

Related literature top

For the structures and properties of cadmium(II) compounds, see: Gu et al. (2007, 2011). For bond lengths and angles in related lead(II) compounds, see: Gu et al. (2011); Shi et al. (2008).

Experimental top

A mixture of Cd(CH3COO)2.2H2O (0.14 g, 0.54 mmol), benzoic acid (0.12 g,1.0 mmol), 1,10-phenanthroline (0.11 g, 0.54 mmol), NaOH (0.04 g, 1.0 mmol), and water (10 ml) was stirred at room temperature for 15 min, and then sealed in a 25 ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. Upon cooling, the solution yielded single crystals of the title complex in ca 75% yield. Anal. Calcd for C52H36N4O8Cd2: C,58.39; H, 3.39; N, 5.24. Found: C, 58.73; H, 3.17; N, 5.63.

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their respective parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-labeling scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the crystal packing along the b axis, showing the three-dimensional framework structure of the title complex.
Di-µ-benzoato- κ3O,O':O';κ3O:O,O'- bis[(benzoato-κ2O,O')(1,10-phenanthroline- κ2N,N')cadmium] top
Crystal data top
[Cd2(C7H5O2)4(C12H8N2)2]Z = 4
Mr = 1069.65F(000) = 2144
Monoclinic, C2/cDx = 1.624 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.90 (2) ŵ = 1.04 mm1
b = 10.023 (11) ÅT = 296 K
c = 20.52 (2) ÅBlock, colourless
β = 103.759 (10)°0.28 × 0.26 × 0.24 mm
V = 4376 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4068 independent reflections
Radiation source: fine-focus sealed tube3002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2326
Tmin = 0.761, Tmax = 0.789k = 1212
15316 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0278P)2 + 10.2493P]
where P = (Fo2 + 2Fc2)/3
4068 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.80 e Å3
24 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cd2(C7H5O2)4(C12H8N2)2]V = 4376 (8) Å3
Mr = 1069.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.90 (2) ŵ = 1.04 mm1
b = 10.023 (11) ÅT = 296 K
c = 20.52 (2) Å0.28 × 0.26 × 0.24 mm
β = 103.759 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
4068 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3002 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.789Rint = 0.037
15316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04024 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0278P)2 + 10.2493P]
where P = (Fo2 + 2Fc2)/3
4068 reflectionsΔρmax = 0.80 e Å3
286 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C210.16729 (15)0.0146 (4)0.09716 (19)0.0619 (13)
C220.1880 (2)0.1080 (4)0.1257 (2)0.104 (2)
H220.16880.14630.15700.125*
C230.2374 (2)0.1733 (4)0.1075 (3)0.124 (3)
H230.25130.25530.12660.149*
C240.26614 (18)0.1160 (6)0.0608 (3)0.119 (3)
H240.29920.15970.04860.143*
C250.2454 (2)0.0065 (6)0.0322 (2)0.149 (4)
H250.26460.04480.00090.179*
C260.1960 (2)0.0718 (4)0.0504 (2)0.116 (3)
H260.18210.15390.03130.139*
Cd10.025400 (15)0.20368 (3)0.167828 (17)0.05215 (13)
C10.0718 (2)0.3046 (6)0.0284 (3)0.0672 (13)
H10.07860.21350.02170.081*
N20.03302 (17)0.3434 (4)0.0840 (2)0.0544 (9)
C50.0233 (2)0.4760 (4)0.0932 (2)0.0547 (12)
N10.04950 (18)0.4302 (4)0.1968 (2)0.0561 (10)
C120.0894 (2)0.4697 (6)0.2513 (3)0.0718 (15)
H120.10950.40580.28180.086*
C80.0312 (3)0.6576 (5)0.1634 (3)0.0673 (15)
C60.0421 (3)0.7075 (6)0.0599 (4)0.0869 (18)
H60.06270.77020.02900.104*
C100.0734 (3)0.6964 (6)0.2211 (4)0.0846 (18)
H100.08180.78650.22960.102*
C110.1029 (3)0.6042 (7)0.2656 (3)0.0856 (18)
H110.13160.62960.30470.103*
C40.0541 (2)0.5701 (5)0.0467 (3)0.0670 (14)
C70.0023 (3)0.7484 (6)0.1148 (4)0.090 (2)
H70.00410.83950.12210.107*
C90.0200 (2)0.5181 (5)0.1524 (3)0.0563 (12)
C30.0941 (3)0.5224 (6)0.0112 (3)0.0782 (16)
H30.11470.58200.04380.094*
C20.1034 (2)0.3905 (7)0.0209 (3)0.0761 (15)
H20.13030.35800.05970.091*
O10.06784 (16)0.1836 (4)0.21712 (17)0.0731 (10)
C130.0884 (2)0.0905 (5)0.1775 (3)0.0584 (12)
O20.06000 (17)0.0531 (3)0.1358 (2)0.0846 (11)
O40.10958 (18)0.2070 (4)0.1074 (2)0.0885 (12)
C200.1165 (2)0.0874 (5)0.1184 (3)0.0603 (12)
O30.08360 (17)0.0266 (4)0.1500 (2)0.0852 (11)
C140.1497 (2)0.0270 (6)0.1776 (3)0.0687 (14)
C150.1692 (3)0.0831 (7)0.1401 (4)0.106 (2)
H150.14370.12010.11450.128*
C190.1870 (3)0.0794 (9)0.2161 (3)0.120 (3)
H190.17350.15330.24300.144*
C170.2647 (5)0.0860 (17)0.1749 (7)0.204 (9)
H170.30450.12150.17220.244*
C160.2269 (5)0.1412 (11)0.1396 (6)0.171 (5)
H160.23930.21840.11480.205*
C180.2449 (4)0.0220 (14)0.2148 (5)0.181 (6)
H180.27020.05710.24110.217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C210.049 (3)0.066 (3)0.072 (3)0.001 (2)0.016 (2)0.014 (3)
C220.086 (4)0.078 (4)0.163 (6)0.021 (4)0.060 (4)0.003 (4)
C230.100 (5)0.093 (5)0.189 (8)0.035 (4)0.054 (5)0.006 (5)
C240.088 (5)0.143 (7)0.139 (7)0.025 (5)0.051 (5)0.037 (6)
C250.125 (7)0.214 (10)0.134 (7)0.063 (7)0.083 (5)0.017 (7)
C260.106 (5)0.157 (7)0.102 (5)0.042 (5)0.060 (4)0.023 (5)
Cd10.0478 (2)0.04592 (19)0.0689 (2)0.00002 (17)0.02607 (16)0.00061 (18)
C10.056 (3)0.070 (3)0.079 (4)0.006 (3)0.025 (3)0.006 (3)
N20.049 (2)0.052 (2)0.069 (3)0.0022 (18)0.027 (2)0.0026 (19)
C50.048 (3)0.053 (3)0.074 (3)0.003 (2)0.037 (3)0.003 (3)
N10.050 (2)0.057 (2)0.068 (2)0.020 (2)0.027 (2)0.019 (2)
C120.063 (3)0.080 (4)0.081 (4)0.018 (3)0.034 (3)0.014 (3)
C80.072 (3)0.044 (3)0.103 (4)0.006 (3)0.055 (3)0.009 (3)
C60.085 (4)0.059 (4)0.133 (6)0.014 (3)0.059 (4)0.020 (4)
C100.095 (5)0.062 (4)0.114 (5)0.018 (4)0.058 (4)0.027 (4)
C110.073 (4)0.098 (5)0.095 (4)0.035 (4)0.039 (3)0.039 (4)
C40.059 (3)0.063 (3)0.094 (4)0.007 (3)0.047 (3)0.011 (3)
C70.103 (5)0.048 (3)0.137 (6)0.003 (3)0.068 (5)0.003 (4)
C90.056 (3)0.046 (3)0.081 (4)0.000 (2)0.045 (3)0.004 (2)
C30.061 (4)0.088 (4)0.096 (4)0.019 (3)0.039 (3)0.027 (4)
C20.057 (3)0.101 (5)0.070 (4)0.001 (3)0.015 (3)0.007 (3)
O10.072 (2)0.075 (2)0.071 (2)0.0174 (19)0.0138 (18)0.0037 (19)
C130.050 (3)0.051 (3)0.074 (3)0.000 (2)0.016 (3)0.009 (3)
O20.072 (2)0.061 (2)0.133 (3)0.0092 (19)0.049 (2)0.016 (2)
O40.088 (3)0.075 (3)0.117 (3)0.027 (2)0.054 (2)0.019 (2)
C200.051 (3)0.061 (3)0.071 (3)0.004 (3)0.019 (2)0.011 (3)
O30.069 (2)0.067 (2)0.135 (3)0.0008 (19)0.056 (2)0.009 (2)
C140.047 (3)0.081 (4)0.075 (3)0.011 (3)0.010 (3)0.018 (3)
C150.085 (5)0.091 (5)0.130 (6)0.035 (4)0.001 (4)0.006 (4)
C190.060 (4)0.207 (9)0.099 (5)0.015 (5)0.029 (4)0.008 (5)
C170.084 (7)0.311 (19)0.182 (12)0.098 (10)0.036 (7)0.124 (12)
C160.110 (8)0.148 (8)0.217 (13)0.077 (7)0.035 (7)0.061 (8)
C180.060 (5)0.363 (18)0.126 (8)0.014 (7)0.037 (5)0.060 (9)
Geometric parameters (Å, º) top
C21—C221.3900C8—C71.418 (8)
C21—C261.3900C8—C91.429 (7)
C21—C201.481 (5)C6—C71.317 (9)
C22—C231.3900C6—C41.416 (8)
C22—H220.9300C6—H60.9300
C23—C241.3900C10—C111.350 (8)
C23—H230.9300C10—H100.9300
C24—C251.3900C11—H110.9300
C24—H240.9300C4—C31.384 (8)
C25—C261.3900C7—H70.9300
C25—H250.9300C3—C21.344 (8)
C26—H260.9300C3—H30.9300
Cd1—O32.265 (4)C2—H20.9300
Cd1—O1i2.331 (4)O1—C131.249 (6)
Cd1—N22.347 (4)O1—Cd1i2.331 (4)
Cd1—O22.371 (4)C13—O21.230 (6)
Cd1—N12.375 (4)C13—C141.486 (6)
Cd1—O42.454 (4)O4—C201.223 (6)
Cd1—O12.493 (4)C20—O31.237 (6)
C1—N21.309 (6)C14—C151.355 (8)
C1—C21.383 (7)C14—C191.368 (8)
C1—H10.9300C15—C161.388 (10)
N2—C51.352 (6)C15—H150.9300
C5—C41.396 (7)C19—C181.387 (10)
C5—C91.416 (7)C19—H190.9300
N1—C121.306 (6)C17—C161.344 (18)
N1—C91.320 (6)C17—C181.364 (18)
C12—C111.396 (8)C17—H170.9300
C12—H120.9300C16—H160.9300
C8—C101.374 (8)C18—H180.9300
C22—C21—C26120.0C10—C8—C9117.9 (6)
C22—C21—C20120.3 (3)C7—C8—C9118.5 (6)
C26—C21—C20119.6 (3)C7—C6—C4121.5 (6)
C22—C21—Cd1116.71 (19)C7—C6—H6119.3
C26—C21—Cd1123.19 (19)C4—C6—H6119.3
C21—C22—C23120.0C11—C10—C8120.3 (6)
C21—C22—H22120.0C11—C10—H10119.8
C23—C22—H22120.0C8—C10—H10119.8
C24—C23—C22120.0C10—C11—C12118.4 (6)
C24—C23—H23120.0C10—C11—H11120.8
C22—C23—H23120.0C12—C11—H11120.8
C25—C24—C23120.0C3—C4—C5117.2 (5)
C25—C24—H24120.0C3—C4—C6123.5 (6)
C23—C24—H24120.0C5—C4—C6119.3 (6)
C24—C25—C26120.0C6—C7—C8121.9 (6)
C24—C25—H25120.0C6—C7—H7119.1
C26—C25—H25120.0C8—C7—H7119.1
C25—C26—C21120.0N1—C9—C5120.8 (4)
C25—C26—H26120.0N1—C9—C8120.4 (5)
C21—C26—H26120.0C5—C9—C8118.8 (5)
O3—Cd1—O1i89.55 (14)C2—C3—C4120.6 (5)
O3—Cd1—N2125.34 (15)C2—C3—H3119.7
O1i—Cd1—N2144.12 (13)C4—C3—H3119.7
O3—Cd1—O283.90 (15)C3—C2—C1118.2 (6)
O1i—Cd1—O2108.88 (14)C3—C2—H2120.9
N2—Cd1—O285.43 (15)C1—C2—H2120.9
O3—Cd1—N1133.60 (14)C13—O1—Cd1i136.0 (3)
O1i—Cd1—N179.49 (14)C13—O1—Cd190.0 (3)
N2—Cd1—N170.31 (15)Cd1i—O1—Cd1103.66 (14)
O2—Cd1—N1142.34 (13)O2—C13—O1121.0 (5)
O3—Cd1—O453.83 (13)O2—C13—C14118.5 (5)
O1i—Cd1—O4110.26 (15)O1—C13—C14120.4 (5)
N2—Cd1—O488.04 (14)C13—O2—Cd196.3 (3)
O2—Cd1—O4120.44 (15)C20—O4—Cd188.2 (3)
N1—Cd1—O487.97 (13)O4—C20—O3121.2 (5)
O3—Cd1—O1123.30 (13)O4—C20—C21119.9 (5)
O1i—Cd1—O175.51 (14)O3—C20—C21118.9 (5)
N2—Cd1—O189.38 (13)C20—O3—Cd196.8 (3)
O2—Cd1—O152.60 (13)C15—C14—C19119.4 (6)
N1—Cd1—O197.48 (12)C15—C14—C13120.7 (6)
O4—Cd1—O1172.80 (13)C19—C14—C13120.0 (6)
N2—C1—C2124.1 (5)C14—C15—C16120.6 (9)
N2—C1—H1117.9C14—C15—H15119.7
C2—C1—H1117.9C16—C15—H15119.7
C1—N2—C5117.5 (5)C14—C19—C18119.9 (9)
C1—N2—Cd1126.1 (3)C14—C19—H19120.1
C5—N2—Cd1116.4 (3)C18—C19—H19120.1
N2—C5—C4122.3 (5)C16—C17—C18120.1 (10)
N2—C5—C9117.6 (4)C16—C17—H17120.0
C4—C5—C9120.1 (5)C18—C17—H17120.0
C12—N1—C9120.5 (4)C17—C16—C15120.0 (12)
C12—N1—Cd1124.6 (4)C17—C16—H16120.0
C9—N1—Cd1114.9 (3)C15—C16—H16120.0
N1—C12—C11122.5 (6)C17—C18—C19120.0 (10)
N1—C12—H12118.7C17—C18—H18120.0
C11—C12—H12118.7C19—C18—H18120.0
C10—C8—C7123.6 (6)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd2(C7H5O2)4(C12H8N2)2]
Mr1069.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)21.90 (2), 10.023 (11), 20.52 (2)
β (°) 103.759 (10)
V3)4376 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.761, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
15316, 4068, 3002
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.12
No. of reflections4068
No. of parameters286
No. of restraints24
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0278P)2 + 10.2493P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.80, 0.62

Computer programs: APEX2 (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, J. Z., Lu, W. G., Zhou, H. C. & Lu, T. B. (2007). Inorg. Chem. 46, 5835–5837.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGu, J. Z., Lv, D. Y., Gao, Z. Q., Liu, J. Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675–683.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Q.-Y., Li, Z.-C., Cheng, Z.-S., Tan, J.-B. & Liu, J.-L. (2008). Acta Cryst. E64, m1458.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds