metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-1-[(2-ethyl-1H-imidazol-1-yl)meth­yl]-1H-benzotriazole}bis­­(iodido­cadmium)

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: wangxiawx83@yahoo.com.cn

(Received 30 May 2011; accepted 1 June 2011; online 11 June 2011)

The dinuclear title complex, [Cd2I4(C12H13N5)2], lies on a crystallographic center of inversion. The CdII atom is four-coordinated by two N atoms from two 1-[(2-ethyl-1H-imidazol-1-yl)meth­yl]-1H-benzotriazole (bmei) ligands and two terminal I atoms in a distorted tetra­hedral coordination environment. The CdII atoms are connected to each other by two bridging bmei ligands. The benzotriazole rings in adjacent mol­ecules are almost parallel, with an average inter­planar distance of 3.3400 (2) Å and a centroid–centroid distance of 4.852 (2) Å.

Related literature

For related structures, see: Meng et al. (2009[Meng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519-1527.]); Huang et al. (2006[Huang, M.-H., Liu, P., Wang, J., Chen, Y. & Liu, Q.-Y. (2006). Inorg. Chem. Commun. 9, 952-954.]); Zhai et al. (2006[Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126-2135.]); Wang et al. (2010[Wang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66, m1207.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2I4(C12H13N5)2]

  • Mr = 1186.95

  • Triclinic, [P \overline 1]

  • a = 7.8323 (4) Å

  • b = 10.0657 (6) Å

  • c = 11.2335 (7) Å

  • α = 78.849 (5)°

  • β = 86.020 (5)°

  • γ = 77.538 (5)°

  • V = 848.08 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 290 K

  • 0.25 × 0.21 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: Gaussian [numerical absorption correction based on Gaussian integration over a multifaceted crystal model (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.])] Tmin = 0.287, Tmax = 0.487

  • 13998 measured reflections

  • 3462 independent reflections

  • 2961 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.061

  • S = 1.08

  • 3462 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Imidazole and benzotriazole derivatives have been widely used in the construction of complexes since they can act as polydentate ligands and function as bridging ligands (Meng et al., 2009; Huang et al., 2006). The CdII atom is a good model atom to construct complexes owing to its property to form bonds with different donors simultaneously, and to its various modes (Zhai et al., 2006; Wang et al., 2010). In this work, through the reaction of 1-[(2-ethyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole (bmei) with cadmium iodide at room temperature, we obtained the title complex [Cd2(C12H13N5)2I2], which is reported here.

The dinuclear title complex, [Cd2(C12H13N5)2I2], lies on a crystallographic center of inversion. The CdII atom is four-coordinated by two N atoms from two 1-[(2-ethyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole (bmei) ligands and two terminal I atoms in a distorted tetrahedral coordination environment. The CdII atoms are connected by two bridging bmei ligands (Fig. 1). The distance between two Cd atoms bridged by two bmei ligands is 8.4983 (7) Å. In addition, the benzotriazole rings in adjacent molecules are almost parallel with an average interplanar distance of 3.3400 (2) Å and a centroid-centroid distance of 4.852 (2) Å.

Related literature top

For related structures, see: Meng et al. (2009); Huang et al. (2006); Zhai et al. (2006); Wang et al. (2010).

Experimental top

The ligand 1-[(2-ethyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole (0.04 mmol, 0.0096 g) in methanol (6 ml) was added dropwise to a methanol solution (6 ml) of CdI2 (0.04 mmol, 0.0146 g) in methanol. The resulting solution was allowed to stand at room temperature. After two weeks good quality colourless crystals were obtained from the dried in air.

Refinement top

H atoms were generated geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsolids (all H atoms have been omitted for clarity). Symmetry code: (A) -x + 1, -y + 2, -z.
[Figure 2] Fig. 2. A view of the crystal packing along the a axis. All H atoms are omitted for clarity.
Bis{µ-1-[(2-ethyl-1H-imidazol-1-yl)methyl]-1H- benzotriazole}bis(iodidocadmium) top
Crystal data top
[Cd2I4(C12H13N5)2]Z = 1
Mr = 1186.95F(000) = 548
Triclinic, P1Dx = 2.324 Mg m3
a = 7.8323 (4) ÅMo Kα radiation, λ = 0.7107 Å
b = 10.0657 (6) ÅCell parameters from 6849 reflections
c = 11.2335 (7) Åθ = 3.0–26.3°
α = 78.849 (5)°µ = 4.93 mm1
β = 86.020 (5)°T = 290 K
γ = 77.538 (5)°Prismatic, colourless
V = 848.08 (9) Å30.25 × 0.21 × 0.15 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3462 independent reflections
Radiation source: Enhance (Mo) X-ray Source2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.2312 pixels mm-1θmax = 26.3°, θmin = 3.0°
ω scansh = 99
Absorption correction: gaussian
[numerical absorption correction based on Gaussian integration over a multifaceted crystal model (CrysAlis PRO; Agilent, 2010)]
k = 1212
Tmin = 0.287, Tmax = 0.487l = 1414
13998 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.026P)2 + 0.3471P]
where P = (Fo2 + 2Fc2)/3
3462 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Cd2I4(C12H13N5)2]γ = 77.538 (5)°
Mr = 1186.95V = 848.08 (9) Å3
Triclinic, P1Z = 1
a = 7.8323 (4) ÅMo Kα radiation
b = 10.0657 (6) ŵ = 4.93 mm1
c = 11.2335 (7) ÅT = 290 K
α = 78.849 (5)°0.25 × 0.21 × 0.15 mm
β = 86.020 (5)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3462 independent reflections
Absorption correction: gaussian
[numerical absorption correction based on Gaussian integration over a multifaceted crystal model (CrysAlis PRO; Agilent, 2010)]
2961 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.487Rint = 0.031
13998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.08Δρmax = 0.82 e Å3
3462 reflectionsΔρmin = 1.05 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.49488 (4)1.31204 (3)0.40337 (2)0.04897 (9)
I20.04748 (4)1.42680 (3)0.22432 (3)0.06153 (11)
Cd10.27758 (4)1.26989 (3)0.24333 (2)0.03657 (9)
N10.2561 (4)1.0409 (3)0.2834 (3)0.0385 (7)
N20.4017 (4)0.9559 (3)0.2627 (3)0.0389 (7)
N30.3713 (4)0.8276 (3)0.2862 (3)0.0350 (7)
N40.5058 (4)0.7062 (3)0.1294 (3)0.0354 (7)
N50.5744 (4)0.7249 (3)0.0641 (3)0.0370 (7)
C10.2006 (5)0.8280 (4)0.3244 (3)0.0343 (8)
C20.1274 (5)0.9679 (4)0.3215 (3)0.0356 (8)
C30.0491 (5)1.0113 (4)0.3544 (4)0.0451 (10)
H30.10031.10430.35120.054*
C40.1422 (6)0.9082 (5)0.3916 (4)0.0514 (11)
H40.25980.93220.41390.062*
C50.0643 (6)0.7676 (5)0.3966 (4)0.0525 (11)
H50.13220.70180.42360.063*
C60.1076 (6)0.7234 (4)0.3635 (4)0.0469 (10)
H60.15830.63030.36700.056*
C70.5056 (5)0.7136 (4)0.2573 (3)0.0421 (9)
H7A0.48510.62740.30590.051*
H7B0.61920.72580.27720.051*
C80.3756 (5)0.6688 (4)0.0752 (4)0.0432 (9)
H80.27620.64140.11320.052*
C90.4206 (5)0.6798 (4)0.0435 (4)0.0440 (9)
H90.35700.65980.10230.053*
C100.6246 (5)0.7411 (3)0.0414 (3)0.0330 (8)
C110.7851 (5)0.7927 (4)0.0590 (4)0.0442 (9)
H11B0.87410.76420.00070.053*
H11A0.82970.74940.13880.053*
C120.7549 (6)0.9494 (4)0.0479 (4)0.0564 (11)
H12B0.71430.99330.03160.085*
H12C0.86260.97480.06070.085*
H12A0.66870.97860.10780.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04834 (17)0.06438 (19)0.03873 (15)0.02051 (14)0.00434 (12)0.00950 (13)
I20.04034 (16)0.04634 (17)0.0956 (3)0.00025 (13)0.00964 (16)0.01437 (16)
Cd10.03734 (16)0.03522 (15)0.03821 (16)0.00826 (12)0.00067 (12)0.00907 (12)
N10.0398 (18)0.0340 (17)0.0428 (18)0.0096 (14)0.0045 (15)0.0097 (14)
N20.0433 (18)0.0328 (17)0.0398 (17)0.0086 (14)0.0052 (15)0.0065 (14)
N30.0410 (17)0.0326 (16)0.0298 (15)0.0068 (14)0.0026 (13)0.0037 (12)
N40.0390 (17)0.0341 (16)0.0343 (16)0.0070 (14)0.0003 (14)0.0103 (13)
N50.0422 (18)0.0361 (17)0.0344 (17)0.0120 (14)0.0013 (14)0.0074 (13)
C10.039 (2)0.038 (2)0.0278 (18)0.0134 (17)0.0008 (16)0.0064 (15)
C20.039 (2)0.040 (2)0.0297 (18)0.0114 (17)0.0007 (16)0.0074 (16)
C30.040 (2)0.050 (2)0.047 (2)0.0078 (19)0.0020 (19)0.0138 (19)
C40.038 (2)0.071 (3)0.049 (2)0.019 (2)0.0026 (19)0.015 (2)
C50.053 (3)0.061 (3)0.053 (3)0.036 (2)0.004 (2)0.007 (2)
C60.058 (3)0.042 (2)0.045 (2)0.020 (2)0.003 (2)0.0083 (18)
C70.046 (2)0.038 (2)0.038 (2)0.0005 (18)0.0032 (18)0.0041 (17)
C80.042 (2)0.042 (2)0.050 (2)0.0147 (18)0.0083 (19)0.0142 (19)
C90.044 (2)0.047 (2)0.049 (2)0.0176 (19)0.0011 (19)0.0195 (19)
C100.0353 (19)0.0265 (17)0.037 (2)0.0068 (15)0.0012 (16)0.0058 (15)
C110.039 (2)0.051 (2)0.046 (2)0.0116 (19)0.0028 (18)0.0127 (19)
C120.055 (3)0.059 (3)0.062 (3)0.028 (2)0.001 (2)0.011 (2)
Geometric parameters (Å, º) top
I1—Cd12.7094 (4)C3—C41.379 (6)
I2—Cd12.6892 (4)C4—H40.9300
Cd1—N12.302 (3)C4—C51.406 (6)
Cd1—N5i2.250 (3)C5—H50.9300
N1—N21.306 (4)C5—C61.373 (6)
N1—C21.371 (5)C6—H60.9300
N2—N31.337 (4)C7—H7A0.9700
N3—C11.375 (5)C7—H7B0.9700
N3—C71.451 (5)C8—H80.9300
N4—C71.452 (5)C8—C91.345 (5)
N4—C81.376 (5)C9—H90.9300
N4—C101.359 (5)C10—C111.499 (5)
N5—Cd1i2.250 (3)C11—H11B0.9700
N5—C91.367 (5)C11—H11A0.9700
N5—C101.323 (4)C11—C121.525 (6)
C1—C21.396 (5)C12—H12B0.9600
C1—C61.393 (5)C12—H12C0.9600
C2—C31.403 (5)C12—H12A0.9600
C3—H30.9300
I2—Cd1—I1118.809 (14)C4—C3—C2116.1 (4)
N1—Cd1—I1109.18 (8)C4—C3—H3121.9
N1—Cd1—I2108.30 (8)C4—C5—H5118.6
N1—N2—N3107.9 (3)C5—C4—H4119.1
N1—C2—C1107.6 (3)C5—C6—C1115.2 (4)
N1—C2—C3131.4 (4)C5—C6—H6122.4
N2—N1—Cd1113.7 (2)C6—C1—C2123.0 (4)
N2—N1—C2109.7 (3)C6—C5—C4122.8 (4)
N2—N3—C1111.1 (3)C6—C5—H5118.6
N2—N3—C7119.6 (3)H7A—C7—H7B108.0
N3—C1—C2103.7 (3)C8—N4—C7124.5 (3)
N3—C1—C6133.2 (4)C8—C9—N5109.3 (4)
N3—C7—N4110.9 (3)C8—C9—H9125.4
N3—C7—H7A109.5C9—N5—Cd1i122.4 (3)
N3—C7—H7B109.5C9—C8—N4106.4 (4)
N4—C7—H7A109.5C9—C8—H8126.8
N4—C7—H7B109.5C10—N4—C7127.6 (3)
N4—C8—H8126.8C10—N4—C8107.8 (3)
N4—C10—C11126.0 (3)C10—N5—Cd1i129.4 (3)
N5i—Cd1—I1106.59 (8)C10—N5—C9107.5 (3)
N5i—Cd1—I2112.86 (8)C10—C11—H11B108.7
N5i—Cd1—N199.31 (11)C10—C11—H11A108.7
N5—C9—H9125.4C10—C11—C12114.1 (3)
N5—C10—N4109.1 (3)C11—C12—H12B109.5
N5—C10—C11124.9 (3)C11—C12—H12C109.5
C1—N3—C7128.9 (3)C11—C12—H12A109.5
C1—C2—C3121.0 (4)H11B—C11—H11A107.6
C1—C6—H6122.4C12—C11—H11B108.7
C2—N1—Cd1136.6 (2)C12—C11—H11A108.7
C2—C3—H3121.9H12B—C12—H12C109.5
C3—C4—H4119.1H12B—C12—H12A109.5
C3—C4—C5121.9 (4)H12C—C12—H12A109.5
I1—Cd1—N1—N266.6 (2)N5i—Cd1—N1—C2133.4 (4)
I1—Cd1—N1—C2115.3 (3)N5—C10—C11—C1290.2 (5)
I2—Cd1—N1—N2162.7 (2)C1—N3—C7—N490.9 (4)
I2—Cd1—N1—C215.4 (4)C1—C2—C3—C41.4 (6)
Cd1—N1—N2—N3178.4 (2)C2—N1—N2—N30.2 (4)
Cd1—N1—C2—C1178.3 (3)C2—C1—C6—C51.6 (6)
Cd1—N1—C2—C31.7 (6)C2—C3—C4—C50.2 (6)
Cd1i—N5—C9—C8171.0 (2)C3—C4—C5—C61.0 (7)
Cd1i—N5—C10—N4169.5 (2)C4—C5—C6—C10.1 (6)
Cd1i—N5—C10—C1111.7 (5)C6—C1—C2—N1177.6 (3)
N1—N2—N3—C10.5 (4)C6—C1—C2—C32.4 (6)
N1—N2—N3—C7172.9 (3)C7—N3—C1—C2172.0 (3)
N1—C2—C3—C4178.6 (4)C7—N3—C1—C610.3 (7)
N2—N1—C2—C10.1 (4)C7—N4—C8—C9177.7 (3)
N2—N1—C2—C3179.9 (4)C7—N4—C10—N5177.4 (3)
N2—N3—C1—C20.5 (4)C7—N4—C10—C111.3 (6)
N2—N3—C1—C6177.1 (4)C8—N4—C7—N369.3 (5)
N2—N3—C7—N481.1 (4)C8—N4—C10—N50.9 (4)
N3—C1—C2—N10.4 (4)C8—N4—C10—C11177.9 (3)
N3—C1—C2—C3179.6 (3)C9—N5—C10—N40.4 (4)
N3—C1—C6—C5178.9 (4)C9—N5—C10—C11178.4 (3)
N4—C8—C9—N50.8 (4)C10—N4—C7—N3106.8 (4)
N4—C10—C11—C1288.4 (5)C10—N4—C8—C91.0 (4)
N5i—Cd1—N1—N244.7 (3)C10—N5—C9—C80.3 (4)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cd2I4(C12H13N5)2]
Mr1186.95
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)7.8323 (4), 10.0657 (6), 11.2335 (7)
α, β, γ (°)78.849 (5), 86.020 (5), 77.538 (5)
V3)848.08 (9)
Z1
Radiation typeMo Kα
µ (mm1)4.93
Crystal size (mm)0.25 × 0.21 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionGaussian
[numerical absorption correction based on Gaussian integration over a multifaceted crystal model (CrysAlis PRO; Agilent, 2010)]
Tmin, Tmax0.287, 0.487
No. of measured, independent and
observed [I > 2σ(I)] reflections
13998, 3462, 2961
Rint0.031
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.08
No. of reflections3462
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.05

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Professor Hong-Wei Hou and Yu Zhu of Zhengzhou University for their help.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, M.-H., Liu, P., Wang, J., Chen, Y. & Liu, Q.-Y. (2006). Inorg. Chem. Commun. 9, 952–954.  CrossRef CAS Google Scholar
First citationMeng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519–1527.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66, m1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds