metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m968-m969

Tris(6-carb­­oxy­pyridine-2-carboxyl­ato)terbium(III) 2.75-hydrate

aDepartment of Inorganic, Analytical, and Applied Chemistry, University of Geneva, 30, quai E. Ansermet, CH–1211 Geneva 4, Switzerland, and bLaboratory of X-Ray Crystallography, University of Geneva, 24, quai E. Ansermet, CH–1211 Geneva 4, Switzerland
*Correspondence e-mail: josef.hamacek@unige.ch

(Received 18 March 2011; accepted 20 June 2011; online 25 June 2011)

In the title compound, [Tb(C7H4NO4)3]·2.75H2O, the Tb3+ atom is coordinated by three tridentate 6-carb­oxy­pyridine-2-carboxyl­ate ligands and lies on a crystallographic threefold rotation axis. The coordination polyhedron around TbIII adopts a distorted tricapped trigonal–prismatic geometry. Disordered water mol­ecules with partial occupancy are also present in the crystal, one of which is associated with each of the carboxyl­ate O atoms of the complex unit.

Related literature

For details of the synthesis, see: Zebret et al. (2009[Zebret, S., Dupont, N., Bernardinelli, G. & Hamacek, J. (2009). Chem. Eur. J. 15, 3355-3358.]). For related structures, see: D'Aléo, et al. (2007[D'Aléo, A., Pompidor, G., Bénédicte, E., Vicat, J., Baldeck, P. L., Toupet, L., Kahn, R., Andraud, C. & Maury, O. (2007). ChemPhysChem, 8, 2125-2131.], 2008[D'Aléo, A., Toupet, L., Rigaut, S., Andraud, C. & Maury, O. (2008). Opt. Mater. 30, 1682-1688.]); Borthwick (1980[Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.]); Albertsson (1970[Albertsson, J. (1970). Acta Chem. Scand. 24, 1213-1229.]); Hamacek et al. (2009[Hamacek, J., Zebret, S. & Bernardinelli, G. (2009). Polyhedron, 28, 2179-2182.]). For isotypic structures, see: Brayshaw et al. (2005[Brayshaw, P. A., Hall, A. K., Harrison, W. T. A., Harrowfield, J. M., Pearce, D., Shand, T. M., Skelton, B. W., Whitaker, C. R. & White, A. H. (2005). Eur. J. Inorg. Chem. 6, 1127-1141.]); Chen et al. (2002[Chen, L., Yin, X.-H., Tan, M.-Y., Xia, C.-G. & Yu, K.-B. (2002). Acta Cryst. E58, m666-m668.]); Iwamura et al. (2007[Iwamura, M., Tsukuda, T. & Morita, M. (2007). Bull. Chem. Soc. Jpn, 80, 1140-1147.]); Lunstroot et al. (2009[Lunstroot, K., Driesen, K., Nockemann, P., Van Hecke, K., Van Meervelt, L., Gorller-Walrand, C., Binnemans, K., Bellayer, S., Viau, L., Le Bideau, J. & Vioux, A. (2009). Dalton Trans. pp. 298-306.]); Pompidor et al. (2008[Pompidor, G., D'Aleo, A., Vicat, J., Toupet, L., Giraud, N., Kahn, R. & Maury, O. (2008). Angew. Chem. Int. Ed. 47, 3388-3391.]); Shengzhi et al. (1989[Shengzhi, H., Zhenchao, D., Huizhen, Z. & Qiwang, L. (1989). Xiamen Dax. Xuebao, Zir. Kex. (Chin.) (J. Xiamen Univ. (Nat. Sci.)), 28, 279-279.]); Van Meervelt et al. (1997[Van Meervelt, L., Binnemans, K., Herck, K. V. & Gorller-Walrand, C. (1997). Bull. Soc. Chim. Belg. 106, 25-27.]). For the Squeeze/bypass procedure, see: van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]). For a description of the Cambridge Structural Database, see: Allen (2002)[Allen, F. H. (2002). Acta Cryst. B58, 380-388.].

[Scheme 1]

Experimental

Crystal data
  • [Tb(C7H4NO4)3]·2.75H2O

  • Mr = 706.79

  • Trigonal, P 31c

  • a = 13.0115 (15) Å

  • c = 9.4142 (13) Å

  • V = 1380.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 200 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: Gaussian (Busing & Levy, 1957[Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.]) Tmin = 0.72, Tmax = 0.88

  • 3830 measured reflections

  • 1569 independent reflections

  • 1464 reflections with I > 2.0σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.082

  • S = 1.00

  • 1566 reflections

  • 122 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −1.01 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 679 Friedel pairs

  • Flack parameter: −0.05 (2)

Table 1
Selected bond lengths (Å)

Tb1—O2 2.435 (6)
Tb1—N6 2.545 (6)
Tb1—O9 2.436 (6)
Symmetry codes: (i) -x+y, -x+1, z; (ii) -y+1, x-y+1, z.

Data collection: IPDS (Stoe & Cie, 1996[Stoe & Cie (1996). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS; data reduction: X-RED (Stoe & Cie 1996[Stoe & Cie (1996). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Since the first structural investigation of tris(dipicolinato)ytterbium complex (Albertsson, 1970), a number of different lanthanide complexes with dipic (= hydrogen 2,6-pyridinedicarboxylate) have been reported. Their brief overview can be found, e.g. in the report of the Hamacek group (Hamacek et al., 2009). Recently, we have reported on the self-assembly of a trinuclear luminescent europium complex with bis(6-methoxycarbonyl-2-carbonylpyridine)amine (L) (Zebret et al., 2009). In an attempt to synthesize the analogous terbium(III) compound with L using the same procedure, small transparent crystals were isolated from the resulting DMSO solution. However, these X-ray quality crystals had a different shape than expected (cubic crystals for Eu3L3). Structural studies reveal the formation of a partially hydrated tris(dipicolinato-1)terbium complex, the title compound [Tb(dipic)3] . 2.75H2O (I) (Fig. 1). Accordingly, the presence of dipicolinate anions is explained by the complete hydrolysis of both ester and amide functions of the ligand L. In addition to crystallography, the obtained crystalline material was analysed using spectroscopic methods. Fig. 2 shows the typical emission spectrum of [Tb(dipic)3]3- with characteristic 5D4 -> 7Fj transitions (D'Aléo et al., 2007, 2008). The luminescent lifetime at room temperature was found to be 1.45 ms, which is a somewhat lower value compared to the D'Aleo's value (2.02 ms) probably due to additional quenching of surrounding water molecules. The IR spectrum on Fig. 3 shows stretching O—H vibrations at about 3400 cm-1 and water bending vibrations at 1637 cm-1.

From the bond lengths, the valence of the Tb atom was calculated to be 3.15. Taking into account the oxidation state of the Tb atom and in the absence of any other charged species in the crystals, the ligand has to be partially protonated. However, the quality of the data does not allow the localion of the position of this extra hydrogen on each of the ligands. Apart from the complex, additional partial water molecules are present in the crystal, one of which (O17) is associated with the carboxyl oxygens of the ligand (details of the refinement are given elsewhere).

In the complex, the TbIII cation is nine-coordinated by three monoanionic dipic1- ligands and lies on the threefold rotation axis. The Tb atom lies 0.081 Å from the plane defined by the three nitrogen donors, so that these four atoms are nearly coplanar (Fig. 4). The two planes defined by the three O2 and three O9 donors, respectively, form a discrete tricapped trigonal prism with the distance to the central terbium atom equal to 1.581 Å and 1.635 Å, respectively. The asymmetric unit comprises one dipicolinate ligand and 1/3 of a Tb atom and the partial water O17 (S.O.F = 0.50). The unit cell consists of two molecules of [Tb(dipic)3] . 2.75H2O with two different configurations (Δ and Λ) for the complex unit; the crystal is thus a racemate. The overall structure of the TbIII complex does not significantly differ from those previously reported for other lanthanides. A search of the Cambridge Structural Database [CSD, Version 5.30 of September 2009 (Allen, 2002)] restricted only to tris(dipicolinato)terbium complexes gives eight crystal structures already reported in the literature, details of which are summarized in Table 2. As it can be seen, the Tb—O distances are not completely symmetrical within the complex ranging from 2.38 to 2.45 Å. Similar results are found for complex (I) (Table 1) with the Tb—O2 and Tb—O9 distances equal to 2.434 (6) Å and 2.437 (6) Å, respectively. The Tb—N6 distance is equal to 2.544 (6) Å, apparently the longest distance for all reported structures.

Concerning the crystal packing, the [Tb(dipic)3] units are arranged in the plane around disordered partial water molecules, occupying the available spaces, which resemble channels (Fig. 5a). The underlayer is shifted along the b axis in order to optimize hydrogen bonding interactions (Fig. 5b). A comparison of structural data in Table 2 shows that the choice of the counter-ion [absent in the case of (I)] has a significant influence on the final crystal packing (seven space groups for nine tris(dipicolinato)terbium complexes), and also on the coordinate bonds within the complex (various Tb—N and Tb—O distances).

Related literature top

For details of the synthesis, see: Zebret et al. (2009). For related structures, see: D'Aléo, et al. (2007, 2008); Borthwick (1980); Albertsson (1970); Hamacek et al. (2009). For isostructural/isotypic structures, see: Brayshaw et al. (2005); Chen et al. (2002); Iwamura et al. (2007); Lunstroot et al. (2009); Pompidor et al. (2008); Shengzhi et al. (1989); Van Meervelt et al. (1997). For the Squeeze/bypass procedure, see: van der Sluis & Spek (1990). For a description of the Cambridge Structural Database, see: Allen (2002)

Experimental top

To a solution of 60.8 mg (0.18 mmol) of the pyridine-containing ligand L and 152.5 mg (0.18 mmol) of Tb(Otf)3 . 13.7H2O in 5 ml DMF was added NaH (26 mg 3.5 eq). The mixture was stirred for three hours under a nitrogen atmosphere, filtered and then evaporated to dryness. The residue was dissolved in DMSO, filtered and water was allowed to diffuse into this solution. The IR spectrum of the isolated solid was measured at room tempeature with a Perkin-Elmer Spectrum 1 (equipped with a Specac Golden Gate ATR accessory). The phosphorescence spectrum was obtained under the same conditions with a Perkin-Elmer Lambda 900 (λexc = 273 nm).

Refinement top

In the absence of any other element that could satisfactorily fit the solvent peaks in the Fourier difference map, the solvent density was attributed to partially occupied water molecules. One of them was included in the model. Its occupancy was refined to 0.45 with Uiso fixed to 0.05 and then fixed to 0.5 while refining the anisotropic displacement parameters. The other possible water molecules that were seen in the solvent density had low occupancies and large anisotropic displacement parameters. The Squeeze/bypass procedure (Sluis et al., 1990) was therefore used to take care of the extra electron density in the channel. 26 Electrons were found in a void of 202 Å3. This is compatible with the presence of 2.5 extra water molecules per unit-cell that were added to the formula. Concerning the charge of the complex, a model with a protonated COOH ligand making a neutral complex is the most probable since infrared measurement and the synthesis conditions do not suggest the presence of an oxonium ion. Although some density is found in the final difference Fourier map around O2 and O4, the geometry of both COO- group and especially their symmetry and bond length do not allow to conclude unambiguously on the position of the extra hydrogen in the ligand. As a consequence, it was not included in the model. Short O17—O contacts [2.84 (2) Å to O10 and 2.85 (2) Å to O4] indicate possible hydrogen bonds between O17 and O4 and O10. O4 and O10 are potential candidates to accommodate the extra proton on the ligand and can act as donors for these hydrogen bonds. If not protonated, they would suit as acceptors for hydrogen bonds involving the hydrogen of the water molecule containing O17. The extra water molecules present in the structure that are not included in the model may also participate to the hydrogen-bonding network.

Computing details top

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003.

Figures top
[Figure 1] Fig. 1. ORTEP view of the terbium tris(dipicolinate) complex (along the c axis) showing the threefold symmetry, the atom-numbering and the displacement ellipsoids with 50% probability. For symmetry codes: (i) -x + y, -x + 1, z; (ii) -y + 1, x-y + 1, z.
[Figure 2] Fig. 2. Phosphorescence spectrum of the title compound (solid state, RT).
[Figure 3] Fig. 3. IR spectrum of the title compound (solid state, RT).
[Figure 4] Fig. 4. Schematic representation of three facial planes containing donor atoms in title compound.
[Figure 5] Fig. 5. Crystal packing of the title compound showing the unit-cell contents and the disordered partial water molecules in the channels (a) viewed along the c axis and (b) viewed along the a axis.
Tris(6-carboxypyridine-2-carboxylato)terbium(III) 2.75-hydrate top
Crystal data top
[Tb(C7H4NO4)3]·2.75H2ODx = 1.701 Mg m3
Mr = 706.79Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 4000 reflections
Hall symbol: P 3 -2cθ = 2.8–32.1°
a = 13.0115 (15) ŵ = 2.63 mm1
c = 9.4142 (13) ÅT = 200 K
V = 1380.3 (5) Å3Prism, colourless
Z = 20.15 × 0.10 × 0.05 mm
F(000) = 694.85
Data collection top
Stoe IPDS
diffractometer
1464 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.8°, θmin = 2.8°
Absorption correction: gaussian
(Busing & Levy, 1957)
h = 1315
Tmin = 0.72, Tmax = 0.88k = 1215
3830 measured reflectionsl = 1011
1569 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.03P)2 + 8.38P]
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.009
S = 1.00Δρmax = 0.57 e Å3
1566 reflectionsΔρmin = 1.01 e Å3
122 parametersAbsolute structure: Flack (1983), 679 Friedel pairs: the crystal is achiral.
1 restraintAbsolute structure parameter: 0.05 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Tb(C7H4NO4)3]·2.75H2OZ = 2
Mr = 706.79Mo Kα radiation
Trigonal, P31cµ = 2.63 mm1
a = 13.0115 (15) ÅT = 200 K
c = 9.4142 (13) Å0.15 × 0.10 × 0.05 mm
V = 1380.3 (5) Å3
Data collection top
Stoe IPDS
diffractometer
1569 independent reflections
Absorption correction: gaussian
(Busing & Levy, 1957)
1464 reflections with I > 2.0σ(I)
Tmin = 0.72, Tmax = 0.88Rint = 0.035
3830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.57 e Å3
S = 1.00Δρmin = 1.01 e Å3
1566 reflectionsAbsolute structure: Flack (1983), 679 Friedel pairs: the crystal is achiral.
122 parametersAbsolute structure parameter: 0.05 (2)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105 107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.33330.66670.38705 (17)0.0281
O20.4896 (5)0.7887 (6)0.2190 (6)0.0368
C30.5468 (8)0.9002 (8)0.2214 (10)0.0390
O40.6394 (7)0.9631 (7)0.1429 (9)0.0940
C50.5045 (7)0.9629 (7)0.3171 (8)0.0342
N60.4104 (5)0.8890 (6)0.3959 (7)0.0284
C70.3641 (7)0.9320 (8)0.4896 (9)0.0310
C80.2606 (7)0.8377 (8)0.5728 (8)0.0345
O90.2404 (5)0.7332 (5)0.5607 (6)0.0366
O100.2028 (7)0.8686 (6)0.6551 (8)0.0659
C110.4116 (7)1.0542 (7)0.5101 (9)0.0392
C120.5099 (9)1.1317 (8)0.4296 (10)0.0450
C130.5560 (8)1.0869 (8)0.3313 (9)0.0412
H1110.37841.08220.57480.0471*
H1210.54421.21280.44130.0541*
H1310.62091.13810.27630.0490*
O170.2402 (15)0.1736 (16)0.4073 (16)0.07950.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.02359 (17)0.02359 (17)0.0372 (3)0.01180 (8)0.00000.0000
O20.032 (3)0.034 (4)0.045 (3)0.017 (3)0.008 (2)0.002 (3)
C30.031 (5)0.032 (5)0.040 (5)0.006 (4)0.009 (4)0.002 (4)
O40.066 (6)0.060 (5)0.119 (7)0.003 (4)0.049 (5)0.016 (5)
C50.032 (4)0.028 (4)0.035 (4)0.009 (3)0.002 (3)0.001 (3)
N60.025 (3)0.032 (3)0.028 (3)0.015 (3)0.005 (3)0.000 (3)
C70.027 (5)0.028 (4)0.037 (5)0.012 (4)0.001 (3)0.003 (3)
C80.025 (4)0.037 (5)0.043 (5)0.017 (4)0.004 (3)0.000 (3)
O90.031 (3)0.026 (3)0.048 (3)0.011 (3)0.013 (3)0.007 (3)
O100.064 (5)0.053 (4)0.087 (5)0.034 (4)0.035 (4)0.011 (4)
C110.041 (5)0.030 (4)0.048 (5)0.019 (4)0.001 (3)0.005 (3)
C120.047 (5)0.026 (5)0.052 (6)0.011 (4)0.003 (4)0.009 (4)
C130.034 (5)0.024 (4)0.055 (5)0.007 (4)0.008 (4)0.004 (4)
O170.071 (11)0.098 (13)0.071 (10)0.043 (10)0.007 (8)0.044 (9)
Geometric parameters (Å, º) top
Tb1—N6i2.545 (6)C5—N61.340 (9)
Tb1—N6ii2.545 (6)C5—C131.410 (12)
Tb1—O9ii2.436 (6)N6—C71.338 (11)
Tb1—O9i2.436 (6)C7—C81.510 (11)
Tb1—O2i2.435 (6)C7—C111.402 (11)
Tb1—O2ii2.435 (6)C8—O91.253 (10)
Tb1—O22.435 (6)C8—O101.277 (10)
Tb1—N62.545 (6)C11—C121.392 (12)
Tb1—O92.436 (6)C11—H1110.921
O2—C31.257 (11)C12—C131.381 (12)
C3—O41.297 (11)C12—H1210.924
C3—C51.494 (12)C13—H1310.929
N6i—Tb1—N6ii119.893 (19)O2ii—Tb1—N674.7 (2)
N6i—Tb1—O9ii70.1 (2)O2—Tb1—N663.52 (19)
N6ii—Tb1—O9ii63.73 (19)O2ii—Tb1—O983.45 (18)
N6i—Tb1—O9i63.73 (19)O2—Tb1—O9127.2 (2)
N6ii—Tb1—O9i135.8 (2)N6—Tb1—O963.73 (19)
O9ii—Tb1—O9i79.9 (2)Tb1—O2—C3124.1 (5)
N6i—Tb1—O2i63.52 (19)O2—C3—O4123.1 (8)
N6ii—Tb1—O2i74.7 (2)O2—C3—C5118.3 (7)
O9ii—Tb1—O2i83.45 (18)O4—C3—C5118.6 (8)
O9i—Tb1—O2i127.2 (2)C3—C5—N6113.3 (7)
N6i—Tb1—O2ii140.7 (2)C3—C5—C13126.0 (7)
N6ii—Tb1—O2ii63.52 (19)N6—C5—C13120.7 (8)
O9ii—Tb1—O2ii127.2 (2)Tb1—N6—C5119.8 (5)
O9i—Tb1—O2ii144.8 (2)Tb1—N6—C7119.5 (5)
O2i—Tb1—O2ii82.3 (2)C5—N6—C7120.3 (7)
N6i—Tb1—O274.7 (2)N6—C7—C8114.0 (7)
N6ii—Tb1—O2140.7 (2)N6—C7—C11122.0 (8)
O9ii—Tb1—O2144.8 (2)C8—C7—C11123.9 (8)
O9i—Tb1—O283.45 (18)C7—C8—O9116.9 (7)
O2i—Tb1—O282.3 (2)C7—C8—O10119.0 (8)
N6i—Tb1—N6119.893 (19)O9—C8—O10124.0 (7)
N6ii—Tb1—N6119.893 (18)Tb1—O9—C8125.0 (5)
O9ii—Tb1—N6135.8 (2)C7—C11—C12118.1 (8)
O9i—Tb1—N670.1 (2)C7—C11—H111120.8
O2i—Tb1—N6140.7 (2)C12—C11—H111121.0
N6i—Tb1—O9135.8 (2)C11—C12—C13119.6 (8)
N6ii—Tb1—O970.1 (2)C11—C12—H121120.4
O9ii—Tb1—O979.9 (2)C13—C12—H121119.9
O9i—Tb1—O979.9 (2)C5—C13—C12119.2 (7)
O2i—Tb1—O9144.8 (2)C5—C13—H131120.7
O2ii—Tb1—O282.3 (2)C12—C13—H131120.1
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H131···O9iii0.932.473.345 (13)158
Symmetry code: (iii) y, x+1, z1/2.

Experimental details

Crystal data
Chemical formula[Tb(C7H4NO4)3]·2.75H2O
Mr706.79
Crystal system, space groupTrigonal, P31c
Temperature (K)200
a, c (Å)13.0115 (15), 9.4142 (13)
V3)1380.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionGaussian
(Busing & Levy, 1957)
Tmin, Tmax0.72, 0.88
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
3830, 1569, 1464
Rint0.035
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.00
No. of reflections1566
No. of parameters122
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 1.01
Absolute structureFlack (1983), 679 Friedel pairs: the crystal is achiral.
Absolute structure parameter0.05 (2)

Computer programs: IPDS (Stoe & Cie, 1996), X-RED (Stoe & Cie 1996), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS (Betteridge et al., 2003.

Selected bond lengths (Å) top
Tb1—N6i2.545 (6)Tb1—O2ii2.435 (6)
Tb1—N6ii2.545 (6)Tb1—O22.435 (6)
Tb1—O9ii2.436 (6)Tb1—N62.545 (6)
Tb1—O9i2.436 (6)Tb1—O92.436 (6)
Tb1—O2i2.435 (6)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z.
Overview of crystal structures containing the tris(dipicolinato)terbium(III) complex unit. top
Space groupCounter-iond(Tb-N)d(Tb-O1)d(Tb-O2)
P-1[Co(NH3)6]3+a2.5092.4162.446
2.4952.4282.428
2.4922.4082.419
P-1[N(CH2CH2NH3)]3+b2.4922.3982.431
2.5092.3932.448
2.4992.4282.435
P-1[(NH2)2CNHCH2CH3)]+c2.5002.4032.410
2.4912.4022.429
2.5442.3832.453
P21[Co(NH2CH2CH2NH2)3]3+d2.5332.4122.418
2.5052.4132.440
2.5082.4172.431
2.5052.4182.432
2.5122.4322.441
2.4862.4022.423
P21/cNa+e2.5042.4062.415
2.5092.4242.429
2.5052.4102.439
C2/c[Co(NH2CH2CH2NH2)3]3+d2.4862.4002.423
2.5092.4192.429
2.5182.4072.416
P31cH+f2.5482.4262.436
2.5472.4262.435
2.5462.4252.435
R-3c[(CH3)3NCH2CH2OH)]+g2.4972.4012.405
2.4962.4012.404
2.4972.4022.405
P-62cNa+, ClO4-h2.4892.4002.400
Notes: (a) Brayshaw et al. (2005); (b) Chen et al. (2002); (c) Pompidor et al. (2008); (d) Iwamura et al. (2007); (e) Shengzhi et al. (1989); (f) this work; (g) Lunstroot et al. (2009); (h) Van Meervelt et al. (1997).
 

Acknowledgements

Financial support from the University of Geneva and the SNF is gratefully acknowledged.

References

First citationAlbertsson, J. (1970). Acta Chem. Scand. 24, 1213–1229.  CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBorthwick, P. W. (1980). Acta Cryst. B36, 628–632.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrayshaw, P. A., Hall, A. K., Harrison, W. T. A., Harrowfield, J. M., Pearce, D., Shand, T. M., Skelton, B. W., Whitaker, C. R. & White, A. H. (2005). Eur. J. Inorg. Chem. 6, 1127–1141.  CrossRef Google Scholar
First citationBusing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChen, L., Yin, X.-H., Tan, M.-Y., Xia, C.-G. & Yu, K.-B. (2002). Acta Cryst. E58, m666–m668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationD'Aléo, A., Pompidor, G., Bénédicte, E., Vicat, J., Baldeck, P. L., Toupet, L., Kahn, R., Andraud, C. & Maury, O. (2007). ChemPhysChem, 8, 2125–2131.  Web of Science PubMed Google Scholar
First citationD'Aléo, A., Toupet, L., Rigaut, S., Andraud, C. & Maury, O. (2008). Opt. Mater. 30, 1682–1688.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamacek, J., Zebret, S. & Bernardinelli, G. (2009). Polyhedron, 28, 2179–2182.  CrossRef CAS Google Scholar
First citationIwamura, M., Tsukuda, T. & Morita, M. (2007). Bull. Chem. Soc. Jpn, 80, 1140–1147.  CrossRef CAS Google Scholar
First citationLunstroot, K., Driesen, K., Nockemann, P., Van Hecke, K., Van Meervelt, L., Gorller-Walrand, C., Binnemans, K., Bellayer, S., Viau, L., Le Bideau, J. & Vioux, A. (2009). Dalton Trans. pp. 298–306.  CrossRef Google Scholar
First citationPompidor, G., D'Aleo, A., Vicat, J., Toupet, L., Giraud, N., Kahn, R. & Maury, O. (2008). Angew. Chem. Int. Ed. 47, 3388–3391.  CrossRef CAS Google Scholar
First citationShengzhi, H., Zhenchao, D., Huizhen, Z. & Qiwang, L. (1989). Xiamen Dax. Xuebao, Zir. Kex. (Chin.) (J. Xiamen Univ. (Nat. Sci.)), 28, 279–279.  Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationStoe & Cie (1996). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVan Meervelt, L., Binnemans, K., Herck, K. V. & Gorller-Walrand, C. (1997). Bull. Soc. Chim. Belg. 106, 25–27.  CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZebret, S., Dupont, N., Bernardinelli, G. & Hamacek, J. (2009). Chem. Eur. J. 15, 3355–3358.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m968-m969
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds