organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(4H-1,2,4-triazol-4-yl)pyridine dihydrate

aTianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: wangying790601@163.com

(Received 16 May 2011; accepted 8 June 2011; online 11 June 2011)

In the asymmetric unit of the title compound, C9H7N7·2H2O, there are two formula units in which the two triazole rings of each of the organic component mol­ecules form dihedral angles of 7.0 (4)/6.9 (4) and 2.7 (4)/3.6 (4)° with the respective central pyridine rings. The four water mol­ecules of solvation form O—H⋯O hydrogen bonds among themselves and O—H⋯N bonds with the N-atom acceptors of the triazine rings, giving a three-dimensional framework structure.

Related literature

For the synthesis of the title compound, see: Wiley & Hart (1953[Wiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368-1371.]). For properties of related compounds, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131-185.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N7·2H2O

  • Mr = 249.25

  • Monoclinic, P 21

  • a = 7.052 (8) Å

  • b = 17.862 (16) Å

  • c = 9.715 (8) Å

  • β = 111.158 (9)°

  • V = 1141.2 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.29 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.635, Tmax = 1.000

  • 6610 measured reflections

  • 2096 independent reflections

  • 1789 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.19

  • 2096 reflections

  • 325 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.85 1.98 2.814 (5) 165
O1—H1B⋯N7ii 0.85 2.07 2.904 (5) 168
O2—H2A⋯O4 0.85 1.87 2.709 (5) 169
O2—H2B⋯O1 0.85 2.00 2.850 (6) 174
O3—H3A⋯O1iii 0.85 2.05 2.888 (5) 169
O3—H3B⋯O2 0.85 2.07 2.916 (6) 170
O4—H4A⋯N13iv 0.85 1.98 2.822 (5) 170
O4—H4B⋯N8v 0.85 2.06 2.873 (5) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x, y, z+1; (iii) x+1, y, z; (iv) [-x, y-{\script{1\over 2}}, -z]; (v) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The field of molecular materials has known rapid development in recent years, with molecular-based compounds which exhibit interesting magnetic and luminescent properties having been described (Haasnoot, 2000). One of the requirements for producing such macroscopic properties is to create interactions between the molecular units and the active sites within the crystal lattices. 1,2,4-Triazole and in particular its derivatives are very interesting as bridging ligands. Here we report the synthesis and the crystal structure of the title compound, the dihydrate of 2,6-di(4H-1,2,4-triazol-4-yl)pyridine, C9H7N7 . 2(H2O) (I).

In the asymmetric unit of (I) there are two molecular units (Fig. 1) in which the two triazole rings of each of the organic component molecules form dihedral angles of 7.0, 6.9 (4)° and 2.7, 3.6 (4)° with the respective pyridine rings. The four water molecules of solvation form hydrogen bonds with the N atom acceptors only of the triazine rings (Table 1) giving a three-dimensional framework structure (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Wiley & Hart (1953). For properties of related compounds, see: Haasnoot (2000).

Experimental top

A mixture of 1.3 g (0.012 mol) of 2,6-diaminopyridine and 2.0 g (0.023 mol) of diformylhydrazine was heated slowly to 160°C and held at 160-170°C for 30 min. The crystals, which separated on cooling, were collected and recrystallized from water to give 0.70 g of (I) (yield 13%). After several recrystallizations from water and from alcohol, the air-dried product was obtained as white needles, m.p. 325-327 K (placed in hot block at 320 K). The analysis was obtained on the air-dried sample. Anal. Calcd for C9H1111N7O2: C, 46.75; H, 3.92%. Found: C, 46.55; H, 3.96%.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C or O atoms with C—H = 0.93 Å and O—H = 0.85 Å and UisoH = 1.2 or 1.5Ueq(C or O). Friedel pairs were averaged for the data used in the final cycles of the refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the two independent molecules of C9H7N7 and the four water molecules of solvation in the asymmetric unit of (I). Probability spheres are drawn at the 15% level.
[Figure 2] Fig. 2. The packing of (I) in the unit cell showing hydrogen-bonding interactions.
2,6-Bis(4H-1,2,4-triazol-4-yl)pyridine dihydrate top
Crystal data top
C9H7N7·2H2OF(000) = 520
Mr = 249.25Dx = 1.451 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1604 reflections
a = 7.052 (8) Åθ = 2.3–23.1°
b = 17.862 (16) ŵ = 0.11 mm1
c = 9.715 (8) ÅT = 293 K
β = 111.158 (9)°Block, colorless
V = 1141.2 (19) Å30.30 × 0.29 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2096 independent reflections
Radiation source: fine-focus sealed tube1789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.635, Tmax = 1.000k = 2021
6610 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
2096 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C9H7N7·2H2OV = 1141.2 (19) Å3
Mr = 249.25Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.052 (8) ŵ = 0.11 mm1
b = 17.862 (16) ÅT = 293 K
c = 9.715 (8) Å0.30 × 0.29 × 0.10 mm
β = 111.158 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1789 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 1.000Rint = 0.028
6610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 1.19Δρmax = 0.13 e Å3
2096 reflectionsΔρmin = 0.19 e Å3
325 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8333 (4)0.57130 (16)0.3342 (3)0.0478 (9)
N20.7010 (5)0.60054 (15)0.2019 (3)0.0486 (9)
N30.7201 (4)0.47959 (13)0.1779 (2)0.0362 (8)
N40.5316 (4)0.40426 (13)0.0145 (2)0.0346 (8)
N50.3281 (4)0.33831 (14)0.2179 (2)0.0361 (7)
N60.1060 (4)0.37967 (15)0.4259 (3)0.0441 (9)
N70.0990 (4)0.30183 (16)0.4263 (3)0.0481 (9)
C10.8413 (5)0.49967 (18)0.3165 (3)0.0397 (10)
C20.6375 (5)0.54465 (17)0.1118 (3)0.0438 (10)
C30.6778 (4)0.40638 (17)0.1168 (3)0.0349 (9)
C40.7786 (5)0.34433 (19)0.1922 (3)0.0439 (10)
C50.7209 (5)0.27547 (18)0.1262 (3)0.0454 (11)
C60.5697 (5)0.27085 (18)0.0111 (3)0.0426 (10)
C70.4817 (4)0.33686 (17)0.0757 (3)0.0342 (9)
C80.2312 (5)0.27945 (18)0.3025 (3)0.0448 (11)
C90.2422 (5)0.39963 (17)0.3011 (3)0.0400 (10)
N80.9611 (4)0.38269 (15)0.9078 (3)0.0438 (9)
N90.9503 (4)0.46049 (16)0.9104 (3)0.0476 (10)
N100.7369 (4)0.41986 (14)0.6977 (2)0.0359 (7)
N110.5207 (4)0.48637 (13)0.5001 (3)0.0349 (8)
N120.3162 (4)0.56230 (14)0.3130 (2)0.0373 (8)
N130.1657 (5)0.65496 (17)0.1704 (3)0.0554 (10)
N140.2856 (5)0.68389 (16)0.3071 (3)0.0569 (10)
C100.8165 (5)0.48092 (18)0.7842 (3)0.0451 (11)
C110.8331 (5)0.36112 (17)0.7816 (3)0.0399 (10)
C120.5915 (4)0.41913 (18)0.5521 (3)0.0343 (9)
C130.5325 (5)0.35351 (17)0.4748 (3)0.0436 (11)
C140.3899 (5)0.35832 (18)0.3354 (3)0.0477 (11)
C150.3103 (5)0.42704 (18)0.2768 (3)0.0426 (10)
C160.3835 (4)0.48866 (17)0.3647 (3)0.0339 (9)
C170.1877 (5)0.58319 (18)0.1776 (3)0.0450 (11)
C180.3716 (5)0.62737 (18)0.3880 (3)0.0507 (11)
O10.0057 (4)0.16140 (14)0.4125 (2)0.0636 (9)
O20.3057 (5)0.15947 (15)0.2795 (3)0.0725 (10)
O30.6429 (5)0.08242 (16)0.2340 (3)0.0749 (10)
O40.1440 (4)0.24252 (14)0.0311 (2)0.0625 (8)
H10.919300.466600.388700.0480*
H20.547400.548700.014800.0530*
H40.881700.348700.284200.0530*
H50.784000.232200.174500.0540*
H60.529000.225100.058000.0510*
H80.256800.229500.274900.0530*
H90.276800.448900.272200.0480*
H100.780000.530300.756500.0540*
H110.810000.311400.752200.0480*
H130.587200.307700.515600.0520*
H140.346100.315100.279500.0570*
H150.212100.431300.182700.0510*
H170.124000.550400.100400.0540*
H180.460300.630900.485500.0610*
H1A0.044500.127500.478300.0760*
H1B0.021700.205600.447500.0760*
H2A0.262900.181900.196700.0870*
H2B0.222700.158300.324800.0870*
H3A0.757900.100000.287500.0900*
H3B0.537900.104900.236200.0900*
H4A0.062400.212100.028800.0750*
H4B0.110000.288300.016000.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0556 (17)0.0435 (18)0.0387 (14)0.0044 (14)0.0102 (13)0.0062 (12)
N20.0578 (18)0.0382 (16)0.0420 (15)0.0014 (13)0.0087 (13)0.0034 (12)
N30.0405 (14)0.0313 (14)0.0313 (12)0.0007 (11)0.0065 (11)0.0000 (10)
N40.0365 (13)0.0302 (15)0.0320 (13)0.0022 (10)0.0061 (10)0.0011 (10)
N50.0399 (13)0.0300 (13)0.0325 (12)0.0003 (12)0.0058 (10)0.0001 (11)
N60.0450 (15)0.0418 (18)0.0363 (15)0.0030 (13)0.0037 (13)0.0064 (11)
N70.0549 (17)0.0401 (18)0.0361 (14)0.0026 (13)0.0007 (13)0.0027 (11)
C10.0438 (17)0.0359 (19)0.0329 (16)0.0033 (15)0.0060 (14)0.0015 (13)
C20.0513 (18)0.0361 (19)0.0365 (16)0.0009 (16)0.0069 (14)0.0024 (14)
C30.0423 (17)0.0285 (17)0.0321 (15)0.0009 (13)0.0113 (13)0.0007 (12)
C40.0451 (18)0.0398 (18)0.0367 (16)0.0028 (15)0.0026 (14)0.0019 (14)
C50.0510 (19)0.0327 (18)0.0453 (18)0.0074 (14)0.0088 (15)0.0118 (13)
C60.0530 (19)0.0283 (17)0.0399 (17)0.0025 (14)0.0090 (15)0.0006 (12)
C70.0378 (16)0.0309 (16)0.0306 (14)0.0009 (14)0.0085 (12)0.0004 (13)
C80.053 (2)0.0309 (18)0.0411 (19)0.0016 (14)0.0058 (16)0.0023 (13)
C90.0444 (17)0.0328 (18)0.0389 (17)0.0037 (13)0.0105 (14)0.0047 (13)
N80.0491 (16)0.0393 (17)0.0369 (15)0.0010 (12)0.0082 (13)0.0032 (11)
N90.0524 (17)0.0416 (18)0.0373 (15)0.0004 (13)0.0022 (13)0.0022 (12)
N100.0393 (13)0.0306 (13)0.0305 (12)0.0007 (12)0.0038 (10)0.0002 (11)
N110.0371 (14)0.0328 (15)0.0318 (12)0.0036 (11)0.0088 (11)0.0003 (10)
N120.0427 (14)0.0308 (15)0.0307 (13)0.0007 (11)0.0039 (11)0.0011 (10)
N130.0616 (18)0.0407 (18)0.0473 (16)0.0017 (14)0.0004 (14)0.0062 (12)
N140.070 (2)0.0359 (16)0.0506 (17)0.0075 (14)0.0045 (15)0.0061 (13)
C100.051 (2)0.0343 (19)0.0425 (17)0.0004 (15)0.0077 (16)0.0026 (14)
C110.0459 (17)0.0308 (17)0.0377 (16)0.0008 (13)0.0087 (14)0.0012 (12)
C120.0378 (15)0.0316 (16)0.0316 (14)0.0007 (13)0.0102 (12)0.0014 (13)
C130.054 (2)0.0283 (18)0.0412 (17)0.0043 (14)0.0083 (15)0.0008 (13)
C140.058 (2)0.035 (2)0.0407 (17)0.0034 (15)0.0066 (16)0.0083 (14)
C150.0457 (18)0.0387 (18)0.0355 (15)0.0011 (15)0.0050 (14)0.0013 (14)
C160.0363 (16)0.0315 (17)0.0316 (14)0.0002 (13)0.0096 (13)0.0021 (12)
C170.050 (2)0.0362 (19)0.0370 (17)0.0035 (15)0.0014 (14)0.0027 (14)
C180.064 (2)0.0342 (19)0.0401 (16)0.0020 (17)0.0021 (15)0.0022 (14)
O10.0880 (18)0.0428 (14)0.0407 (12)0.0062 (13)0.0001 (12)0.0008 (10)
O20.0855 (19)0.0621 (18)0.0589 (15)0.0193 (15)0.0128 (14)0.0157 (13)
O30.0718 (18)0.0639 (17)0.0754 (18)0.0105 (14)0.0103 (14)0.0183 (14)
O40.0628 (15)0.0468 (15)0.0571 (13)0.0005 (12)0.0034 (12)0.0059 (11)
Geometric parameters (Å, º) top
O1—H1A0.8500N11—C121.329 (4)
O1—H1B0.8500N12—C181.352 (4)
O2—H2B0.8500N12—C161.427 (4)
O2—H2A0.8500N12—C171.353 (4)
O3—H3A0.8500N13—C171.290 (5)
O3—H3B0.8500N13—N141.391 (4)
N1—N21.389 (4)N14—C181.289 (4)
N1—C11.295 (5)C3—C41.376 (5)
N2—C21.296 (4)C4—C51.379 (5)
N3—C11.357 (4)C5—C61.377 (4)
N3—C31.423 (4)C6—C71.374 (5)
N3—C21.354 (4)C1—H10.9300
N4—C31.320 (4)C2—H20.9300
N4—C71.333 (4)C4—H40.9300
N5—C91.366 (4)C5—H50.9300
N5—C81.357 (4)C6—H60.9300
N5—C71.415 (4)C8—H80.9300
N6—N71.391 (4)C9—H90.9300
N6—C91.296 (4)C12—C131.373 (5)
N7—C81.291 (4)C13—C141.367 (4)
O4—H4A0.8500C14—C151.384 (5)
O4—H4B0.8500C15—C161.374 (5)
N8—C111.291 (4)C10—H100.9300
N8—N91.393 (4)C11—H110.9300
N9—C101.301 (4)C13—H130.9300
N10—C121.416 (4)C14—H140.9300
N10—C101.368 (4)C15—H150.9300
N10—C111.351 (4)C17—H170.9300
N11—C161.323 (4)C18—H180.9300
H1A—O1—H1B114.00N3—C1—H1125.00
H2A—O2—H2B115.00N2—C2—H2125.00
H3A—O3—H3B117.00N3—C2—H2125.00
N2—N1—C1107.2 (3)C3—C4—H4121.00
N1—N2—C2106.8 (3)C5—C4—H4121.00
C1—N3—C2104.7 (2)C4—C5—H5120.00
C1—N3—C3128.3 (2)C6—C5—H5120.00
C2—N3—C3127.0 (2)C5—C6—H6121.00
C3—N4—C7116.5 (2)C7—C6—H6121.00
C8—N5—C9104.1 (2)N5—C8—H8124.00
C7—N5—C8128.2 (3)N7—C8—H8124.00
C7—N5—C9127.7 (3)N6—C9—H9125.00
N7—N6—C9106.9 (3)N5—C9—H9125.00
N6—N7—C8107.1 (3)N9—C10—N10110.7 (3)
H4A—O4—H4B115.00N8—C11—N10111.6 (3)
N9—N8—C11106.9 (3)N10—C12—C13121.4 (3)
N8—N9—C10106.8 (3)N11—C12—C13124.5 (3)
C10—N10—C12127.6 (3)N10—C12—N11114.1 (3)
C10—N10—C11104.1 (2)C12—C13—C14117.2 (3)
C11—N10—C12128.3 (3)C13—C14—C15120.5 (3)
C12—N11—C16116.5 (3)C14—C15—C16116.7 (3)
C17—N12—C18104.4 (2)N11—C16—C15124.7 (3)
C16—N12—C17128.1 (2)N12—C16—C15121.1 (2)
C16—N12—C18127.4 (2)N11—C16—N12114.2 (2)
N14—N13—C17107.3 (3)N12—C17—N13110.6 (3)
N13—N14—C18106.3 (3)N12—C18—N14111.3 (3)
N1—C1—N3110.5 (3)N10—C10—H10125.00
N2—C2—N3110.9 (3)N9—C10—H10125.00
N3—C3—C4121.9 (3)N10—C11—H11124.00
N4—C3—C4124.4 (3)N8—C11—H11124.00
N3—C3—N4113.7 (2)C14—C13—H13121.00
C3—C4—C5117.5 (3)C12—C13—H13121.00
C4—C5—C6120.0 (3)C13—C14—H14120.00
C5—C6—C7117.1 (3)C15—C14—H14120.00
N4—C7—N5113.9 (2)C14—C15—H15122.00
N5—C7—C6121.5 (3)C16—C15—H15122.00
N4—C7—C6124.6 (3)N13—C17—H17125.00
N5—C8—N7111.2 (3)N12—C17—H17125.00
N5—C9—N6110.7 (3)N12—C18—H18124.00
N1—C1—H1125.00N14—C18—H18124.00
C1—N1—N2—C20.3 (4)C12—N10—C10—N9178.3 (3)
N2—N1—C1—N30.0 (4)C11—N10—C12—N11178.5 (3)
N1—N2—C2—N30.4 (4)C11—N10—C12—C131.4 (5)
C2—N3—C1—N10.2 (4)C10—N10—C12—N113.5 (5)
C3—N3—C1—N1176.3 (3)C10—N10—C12—C13176.5 (3)
C1—N3—C2—N20.3 (4)C16—N11—C12—N10179.6 (3)
C3—N3—C2—N2176.2 (3)C12—N11—C16—C150.5 (5)
C1—N3—C3—N4170.9 (3)C16—N11—C12—C130.4 (5)
C1—N3—C3—C47.3 (5)C12—N11—C16—N12178.6 (3)
C2—N3—C3—N44.9 (5)C17—N12—C16—C153.5 (5)
C2—N3—C3—C4176.9 (3)C18—N12—C16—N112.4 (5)
C7—N4—C3—N3178.4 (3)C18—N12—C16—C15178.5 (3)
C7—N4—C3—C40.2 (5)C16—N12—C17—N13178.6 (3)
C3—N4—C7—N5178.4 (3)C18—N12—C17—N130.2 (4)
C3—N4—C7—C60.8 (5)C16—N12—C18—N14178.5 (3)
C8—N5—C7—N4173.2 (3)C17—N12—C16—N11175.6 (3)
C8—N5—C7—C67.6 (5)C17—N12—C18—N140.1 (4)
C9—N5—C7—N46.3 (5)C17—N13—N14—C180.2 (4)
C9—N5—C7—C6172.9 (3)N14—N13—C17—N120.3 (4)
C7—N5—C8—N7179.9 (3)N13—N14—C18—N120.1 (4)
C9—N5—C8—N70.3 (4)N3—C3—C4—C5177.4 (3)
C7—N5—C9—N6180.0 (3)N4—C3—C4—C50.7 (5)
C8—N5—C9—N60.5 (4)C3—C4—C5—C61.0 (5)
C9—N6—N7—C80.2 (4)C4—C5—C6—C70.5 (5)
N7—N6—C9—N50.4 (4)C5—C6—C7—N40.4 (5)
N6—N7—C8—N50.1 (4)C5—C6—C7—N5178.6 (3)
N9—N8—C11—N100.5 (4)N10—C12—C13—C14179.4 (3)
C11—N8—N9—C100.5 (4)N11—C12—C13—C140.6 (5)
N8—N9—C10—N100.3 (4)C12—C13—C14—C150.0 (5)
C11—N10—C10—N90.0 (4)C13—C14—C15—C160.7 (5)
C10—N10—C11—N80.3 (4)C14—C15—C16—N111.0 (5)
C12—N10—C11—N8178.0 (3)C14—C15—C16—N12178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.851.982.814 (5)165
O1—H1B···N7ii0.852.072.904 (5)168
O2—H2A···O40.851.872.709 (5)169
O2—H2B···O10.852.002.850 (6)174
O3—H3A···O1iii0.852.052.888 (5)169
O3—H3B···O20.852.072.916 (6)170
O4—H4A···N13iv0.851.982.822 (5)170
O4—H4B···N8v0.852.062.873 (5)159
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y1/2, z; (v) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC9H7N7·2H2O
Mr249.25
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.052 (8), 17.862 (16), 9.715 (8)
β (°) 111.158 (9)
V3)1141.2 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.29 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.635, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6610, 2096, 1789
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.19
No. of reflections2096
No. of parameters325
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.851.982.814 (5)165
O1—H1B···N7ii0.852.072.904 (5)168
O2—H2A···O40.851.872.709 (5)169
O2—H2B···O10.852.002.850 (6)174
O3—H3A···O1iii0.852.052.888 (5)169
O3—H3B···O20.852.072.916 (6)170
O4—H4A···N13iv0.851.982.822 (5)170
O4—H4B···N8v0.852.062.873 (5)159
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y1/2, z; (v) x1, y, z1.
 

Acknowledgements

This work was supported financially by Tianjin Normal University (grant No. 5RL090), the Natural Science Foundation of Tianjin (grant No. 11JCYBJC03600) and the Young Scientist Fund (grant No. 52 G10005).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131–185.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368–1371.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds