organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(1H-Indol-3-yl­methyl­­idene)-2,2-di­methyl-1,3-dioxane-4,6-dione

aBioengineering College, Xihua University, Chengdu, Sichuan 610039, People's Republic of China, and bSichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, People's Republic of China
*Correspondence e-mail: shijianyoude@126.com

(Received 23 May 2011; accepted 19 June 2011; online 30 June 2011)

In the title compound, C15H13NO4, the conjugated double-bond system between the two rings adopts a cis configuration and there is an intra­molecular indole–ketone C—H⋯O inter­action. The indole N—H group forms an inter­molecular hydrogen bond with a ketone O-atom acceptor, giving a chain structure along the ab direction. The O-heterocyclic ring adopts a boat conformation and makes a dihedral angle of 16.72 (6)° with the indole ring system.

Related literature

For a similar structure, see: He et al. (2011[He, Y., Wu, J., Tong, R. & Shi, J. (2011). Acta Cryst. E67, o1216.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO4

  • Mr = 271.26

  • Triclinic, [P \overline 1]

  • a = 7.0228 (4) Å

  • b = 8.7021 (5) Å

  • c = 11.5668 (9) Å

  • α = 80.281 (6)°

  • β = 76.362 (6)°

  • γ = 70.662 (5)°

  • V = 645.02 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.969, Tmax = 1.000

  • 5351 measured reflections

  • 2632 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.04

  • 2632 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 2.02 2.8285 (16) 152
C8—H8⋯O3 0.95 2.17 2.8492 (19) 128
Symmetry code: (i) x+1, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound C15H13NO4 (I) is a key reaction intermediate which can be used to synthesize the 4(1H)quinolone derivatives via thermolysis. These compounds can be used as precursors for the synthesis of anti-malarial and, anticancer agents.

In (I) (Fig. 1) the conjugated double bond system between the two rings adopts a cis configuration and there is an intramolecular indole C—H···Oketone interaction. The indole N—H group forms an intermolecular hydrogen bond with a ketone O acceptor (Table 1), giving a one-dimensional chain structure.

Related literature top

For a similar structure, see: He et al. (2011).

Experimental top

A mixture of 2,2-dimethyl-1,3-dioxane-4,6-dione (1.44 g, 0.01 mol) and methyl orthoformate (1.27 g, 0.012 mol) was heated to reflux for 0.5 h, after which a solution of 1H-indole (1.17 g, 0.01 mol) in ethanol (20 mL) was added. The mixture was refluxed for a further 3.5 h and then poured into cold water after which the product was removed by filtration. Yellow crystals of (I) were obtained after 7 days from the room temperature evaporation of a solution in CH2Cl2–methanol.

Refinement top

Hydrogen atoms were included in the refinement at calculated positions and allowed to ride on the parent atom with C—H = 0.95, 0.98 Å or N—H = 0.88 Å and Uiso = 1.2Ueq(aromatic C or N) or 1.5Ueq(aliphatic).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom numbering scheme of the title compound with non-H atoms shown as 50% probability ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
5-(1H-Indol-3-ylmethylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C15H13NO4Z = 2
Mr = 271.26F(000) = 284
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.0228 (4) ÅCell parameters from 2300 reflections
b = 8.7021 (5) Åθ = 2.9–29.2°
c = 11.5668 (9) ŵ = 0.10 mm1
α = 80.281 (6)°T = 150 K
β = 76.362 (6)°Block, yellow
γ = 70.662 (5)°0.30 × 0.25 × 0.20 mm
V = 645.02 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Eos CCD-detector
diffractometer
2632 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.969, Tmax = 1.000l = 1414
5351 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.1554P]
where P = (Fo2 + 2Fc2)/3
2632 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H13NO4γ = 70.662 (5)°
Mr = 271.26V = 645.02 (7) Å3
Triclinic, P1Z = 2
a = 7.0228 (4) ÅMo Kα radiation
b = 8.7021 (5) ŵ = 0.10 mm1
c = 11.5668 (9) ÅT = 150 K
α = 80.281 (6)°0.30 × 0.25 × 0.20 mm
β = 76.362 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos CCD-detector
diffractometer
2632 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2098 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 1.000Rint = 0.018
5351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
2632 reflectionsΔρmin = 0.20 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44545 (15)0.08780 (12)0.63114 (9)0.0267 (3)
O20.13409 (15)0.23138 (12)0.74782 (9)0.0258 (3)
O30.68858 (15)0.09984 (13)0.71118 (10)0.0310 (3)
O40.06872 (15)0.18683 (12)0.94348 (10)0.0261 (3)
N10.79371 (17)0.49318 (14)0.96643 (12)0.0228 (3)
H10.90010.57460.93900.027*
C10.6924 (2)0.48713 (17)1.08487 (14)0.0219 (3)
C20.7324 (2)0.59954 (18)1.18294 (15)0.0270 (4)
H20.84460.69751.17620.032*
C30.6019 (2)0.56276 (19)1.29094 (15)0.0309 (4)
H30.62370.63701.36030.037*
C40.4373 (2)0.41693 (19)1.29963 (15)0.0308 (4)
H40.34880.39501.37490.037*
C50.4011 (2)0.30476 (18)1.20145 (14)0.0249 (3)
H50.29010.20611.20880.030*
C60.5306 (2)0.33914 (17)1.09113 (14)0.0203 (3)
C70.5402 (2)0.25491 (17)0.97153 (14)0.0201 (3)
C80.7072 (2)0.35817 (17)0.89988 (14)0.0218 (3)
H80.75210.33550.81650.026*
C90.3935 (2)0.10549 (17)0.94238 (14)0.0206 (3)
H90.29060.06691.00960.025*
C100.3646 (2)0.00301 (17)0.83978 (14)0.0205 (3)
C110.1806 (2)0.14000 (17)0.85038 (14)0.0216 (3)
C120.5113 (2)0.01466 (17)0.72654 (14)0.0229 (3)
C130.2287 (2)0.16020 (18)0.63629 (14)0.0251 (4)
C140.1329 (2)0.0340 (2)0.62248 (15)0.0307 (4)
H14B0.01380.08650.62190.046*
H14C0.14920.05180.68940.046*
H14A0.20110.01450.54720.046*
C150.2029 (3)0.3017 (2)0.54051 (16)0.0351 (4)
H15A0.26940.26130.46220.053*
H15C0.26650.37950.55510.053*
H15B0.05610.35650.54180.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (5)0.0276 (6)0.0241 (6)0.0043 (4)0.0026 (4)0.0005 (5)
O20.0264 (6)0.0207 (5)0.0253 (6)0.0002 (4)0.0056 (5)0.0019 (4)
O30.0216 (6)0.0307 (6)0.0320 (7)0.0010 (5)0.0005 (5)0.0023 (5)
O40.0239 (5)0.0216 (5)0.0261 (6)0.0007 (4)0.0010 (5)0.0055 (4)
N10.0183 (6)0.0172 (6)0.0302 (8)0.0004 (5)0.0044 (5)0.0059 (5)
C10.0191 (7)0.0181 (7)0.0306 (9)0.0067 (6)0.0061 (6)0.0042 (6)
C20.0258 (8)0.0187 (7)0.0364 (10)0.0054 (6)0.0096 (7)0.0001 (7)
C30.0356 (9)0.0270 (8)0.0306 (10)0.0108 (7)0.0107 (7)0.0046 (7)
C40.0310 (8)0.0323 (9)0.0277 (9)0.0108 (7)0.0007 (7)0.0037 (7)
C50.0227 (8)0.0211 (7)0.0290 (9)0.0050 (6)0.0026 (6)0.0042 (6)
C60.0181 (7)0.0168 (7)0.0284 (9)0.0065 (6)0.0065 (6)0.0036 (6)
C70.0185 (7)0.0174 (7)0.0258 (8)0.0057 (6)0.0055 (6)0.0041 (6)
C80.0204 (7)0.0198 (7)0.0258 (8)0.0048 (6)0.0058 (6)0.0041 (6)
C90.0181 (7)0.0188 (7)0.0263 (8)0.0062 (6)0.0032 (6)0.0064 (6)
C100.0177 (7)0.0164 (7)0.0261 (8)0.0032 (6)0.0030 (6)0.0047 (6)
C110.0212 (7)0.0170 (7)0.0270 (9)0.0059 (6)0.0052 (6)0.0024 (6)
C120.0219 (7)0.0197 (7)0.0263 (9)0.0059 (6)0.0036 (6)0.0029 (6)
C130.0231 (8)0.0246 (8)0.0233 (9)0.0021 (6)0.0036 (6)0.0025 (6)
C140.0300 (9)0.0319 (9)0.0304 (10)0.0084 (7)0.0065 (7)0.0048 (7)
C150.0391 (9)0.0302 (9)0.0303 (10)0.0055 (7)0.0078 (8)0.0037 (7)
Geometric parameters (Å, º) top
O1—C121.3644 (18)C5—C61.395 (2)
O1—C131.4326 (17)C6—C71.450 (2)
O2—C111.3559 (18)C7—C81.402 (2)
O2—C131.4430 (18)C7—C91.4123 (19)
O3—C121.2084 (17)C8—H80.9500
O4—C111.2165 (18)C9—H90.9500
N1—H10.8800C9—C101.372 (2)
N1—C11.3877 (19)C10—C111.4649 (19)
N1—C81.3359 (19)C10—C121.458 (2)
C1—C21.384 (2)C13—C141.511 (2)
C1—C61.4063 (19)C13—C151.504 (2)
C2—H20.9500C14—H14B0.9800
C2—C31.380 (2)C14—H14C0.9800
C3—H30.9500C14—H14A0.9800
C3—C41.405 (2)C15—H15A0.9800
C4—H40.9500C15—H15C0.9800
C4—C51.380 (2)C15—H15B0.9800
C5—H50.9500
O1—C12—C10116.72 (12)C5—C6—C7134.43 (13)
O1—C13—O2109.75 (12)C6—C5—H5120.7
O1—C13—C14110.44 (12)C7—C8—H8125.1
O1—C13—C15106.62 (12)C7—C9—H9112.5
O2—C11—C10117.29 (13)C8—N1—H1124.7
O2—C13—C14110.71 (12)C8—N1—C1110.52 (12)
O2—C13—C15105.59 (12)C8—C7—C6105.50 (12)
O3—C12—O1117.16 (13)C8—C7—C9131.37 (15)
O3—C12—C10125.97 (14)C9—C7—C6122.98 (13)
O4—C11—O2116.98 (12)C9—C10—C11116.17 (13)
O4—C11—C10125.70 (14)C9—C10—C12125.57 (13)
N1—C1—C6107.03 (13)C10—C9—C7135.03 (14)
N1—C8—C7109.82 (14)C10—C9—H9112.5
N1—C8—H8125.1C11—O2—C13118.28 (11)
C1—N1—H1124.7C12—O1—C13118.58 (11)
C1—C2—H2121.5C12—C10—C11117.87 (13)
C1—C6—C7107.12 (13)C13—C14—H14B109.5
C2—C1—N1129.50 (13)C13—C14—H14C109.5
C2—C1—C6123.46 (14)C13—C14—H14A109.5
C2—C3—H3119.6C13—C15—H15A109.5
C2—C3—C4120.86 (15)C13—C15—H15C109.5
C3—C2—C1116.95 (14)C13—C15—H15B109.5
C3—C2—H2121.5H14B—C14—H14C109.5
C3—C4—H4119.2H14B—C14—H14A109.5
C4—C3—H3119.6H14C—C14—H14A109.5
C4—C5—H5120.7C15—C13—C14113.52 (14)
C4—C5—C6118.70 (14)H15A—C15—H15C109.5
C5—C4—C3121.57 (15)H15A—C15—H15B109.5
C5—C4—H4119.2H15C—C15—H15B109.5
C5—C6—C1118.44 (14)
C13—O1—C12—O3165.01 (13)C3—C4—C5—C60.7 (2)
C13—O1—C12—C1019.01 (18)C4—C5—C6—C10.1 (2)
C12—O1—C13—O249.24 (16)C4—C5—C6—C7179.37 (16)
C12—O1—C13—C1473.09 (16)C1—C6—C7—C80.37 (17)
C12—O1—C13—C15163.15 (13)C1—C6—C7—C9176.32 (14)
C13—O2—C11—O4164.73 (13)C5—C6—C7—C8178.93 (17)
C13—O2—C11—C1017.27 (19)C5—C6—C7—C93.0 (3)
C11—O2—C13—O148.22 (16)C6—C7—C8—N10.17 (17)
C11—O2—C13—C1473.94 (16)C9—C7—C8—N1175.30 (16)
C11—O2—C13—C15162.80 (14)C6—C7—C9—C10179.25 (17)
C8—N1—C1—C2179.28 (16)C8—C7—C9—C104.5 (3)
C8—N1—C1—C60.89 (17)C7—C9—C10—C11177.42 (16)
C1—N1—C8—C70.66 (18)C7—C9—C10—C129.9 (3)
N1—C1—C2—C3178.55 (15)C9—C10—C11—O2171.64 (13)
C6—C1—C2—C31.3 (2)C9—C10—C11—O410.6 (2)
N1—C1—C6—C5178.68 (13)C12—C10—C11—O215.1 (2)
N1—C1—C6—C70.75 (17)C12—C10—C11—O4162.73 (15)
C2—C1—C6—C51.2 (2)C9—C10—C12—O1173.13 (14)
C2—C1—C6—C7179.40 (14)C9—C10—C12—O311.3 (3)
C1—C2—C3—C40.3 (2)C11—C10—C12—O114.3 (2)
C2—C3—C4—C50.7 (2)C11—C10—C12—O3161.31 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.022.8285 (16)152
C8—H8···O30.952.172.8492 (19)128
C9—H9···O40.952.372.7979 (18)107
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC15H13NO4
Mr271.26
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.0228 (4), 8.7021 (5), 11.5668 (9)
α, β, γ (°)80.281 (6), 76.362 (6), 70.662 (5)
V3)645.02 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.969, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5351, 2632, 2098
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.04
No. of reflections2632
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.022.8285 (16)152
C8—H8···O30.952.172.8492 (19)128
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection. This study was supported by the Research Fund of the Key Laboratory of TCM Biotechnology (Xihua University).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, Y., Wu, J., Tong, R. & Shi, J. (2011). Acta Cryst. E67, o1216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds