organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1830-o1831

A second monoclinic polymorph of 2-[2-(4-meth­­oxy­phen­yl)hydrazinyl­­idene]-1,3-di­phenyl­propane-1,3-dione

aInstituto de Ciencias Químicas, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, bDepartamento de Ciencias Físicas, Universidad Andres Bello, Avda. República 220, Santiago de Chile, Chile, cInstituto de Ciencias Moleculares y Microbiología, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, and dLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago de Chile, Chile
*Correspondence e-mail: lalvarez@unab.cl

(Received 17 June 2011; accepted 21 June 2011; online 30 June 2011)

The title compound, C22H18N2O3 is the second monoclinic polymorph (P21/c) of the compound, the first being reported in space group P21 [Bertolasi et al. (1993[Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223-2228.]). J. Chem. Soc. Perkin Trans. 2, pp. 2223–2228]. In the mol­ecular structure of the title compound, the inter­planar angle between the benzoyl units is 80.04 (5)°, while the corresponding angles between the phenyl­hydrazinyl­idene and benzoyl groups are 36.11 (5) and 55.77 (2)°. A strong resonance-assisted intra­molecular N—H⋯O hydrogen bond is found. In the crystal, the entire supra­molecular structure is constructed by weak inter­molecular C—H⋯O inter­actions and an inter-ring ππ inter­action [centroid–centroid distance = 3.6088 (8) Å].

Related literature

For details of the synthesis, see: Yao (1964[Yao, H. C. (1964). J. Org. Chem. 29, 2959-2962.]). For resonance-assisted hydrogen bonds and related structures, see: Bertolasi et al. (1993[Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223-2228.]); Bustos, Alvarez-Thon, Barría et al. (2011[Bustos, C., Alvarez-Thon, L., Barría, D., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1587.]); Bustos, Alvarez-Thon, Cárcamo, Garland & Sánchez (2011[Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1426.]).; Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez (2011[Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Ibañez, A. & Sánchez, C. (2011). Acta Cryst. E67, o1450-o1451.]); Gilli et al. (1993[Gilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564-576.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O3

  • Mr = 358.38

  • Monoclinic, P 21 /c

  • a = 12.3045 (11) Å

  • b = 11.055 (1) Å

  • c = 14.2435 (13) Å

  • β = 113.683 (1)°

  • V = 1774.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.52 × 0.26 × 0.15 mm

Data collection
  • Bruker D8 Discover diffractometer with SMART CCD area detector

  • 10646 measured reflections

  • 3600 independent reflections

  • 2894 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.04

  • 3600 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O2 0.884 (14) 1.977 (15) 2.6427 (14) 131.0 (14)
C15—H15⋯O3i 0.95 2.64 3.5859 (16) 174
C21—H21⋯O1ii 0.95 2.63 3.3441 (15) 132
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Extensive experimental and theoretical efforts have been devoted to understand the reasons for the formation of the very strong intramolecular O—H···O hydrogen bond in β-diketoenolic systems (Bertolasi et al., 1993). A model called RAHB (Resonance Assisted Hydrogen Bond) was suggested, which is essentially a synergistic mutual reinforcement of the H-bond with the π-delocalization within this heterodienic system (Gilli et al., 1993). Besides, this concept has been applied to other heterodienic systems such as enaminones and ketohydrazones. On the other hand, in previous works we have reported the crystal structures of three β-diketohydrazones of the type 2-(2-(R-phenyl)hydrazinylidene)-1,3-diphenylpropane-1,3-dione (R = 4-Br, 4-NO2, 3-Cl) that contain this type of hydrogen bond (Bustos, Alvarez-Thon, Barría et al., 2011; Bustos, Alvarez-Thon, Cárcamo, Garland & Sánchez, 2011; Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez, 2011. We now present the crystal structure of a second monoclinic polymorph of the compound C22H18N2O3 (I), described previously in the literature (Bertolasi et al., 1993), prepared using similar methodology (Yao, 1964) and recrystallizing from ethanol as orange crystals. The title compound crystallizes in space group P21/c whereas the previously reported structure (Bertolasi et al., 1993) crystallizes in space group P21. The most striking structural difference between the two polymorphs is in the methoxy group which appears rotated by 180°.

In the molecular structure of the title compound (Fig. 1), the interplanar angle between the benzoyl units is 80.04 (5)°. The corresponding angles between the phenylhydrazinylidene and the benzoyl groups are 36.11 (5) and 55.77 (2)°, respectively. In the crystal, a strong resonance-assisted intramolecular hydrogen bond, N2—H1···O2, is observed (Table 1).

The structure shows no conventional intermolecular hydrogen bonds and the entire supramolecular structure is constructed only by weak interactions. For the sake of clarity, the crystal packing can be described through the formation of two inversion-related dimers: firstly, a dimer is formed via weak intermolecular contacts of the type C15—H15···O3i, and a π-π stacking interaction with a Cg···Cgi distance of 3.6088 (8) Å, where Cg is the centroid of the C16—C21 ring (Fig. 2) [symmetry code: (i) -x + 1, -y + 1, -z + 2]. Secondly, a dimer is formed via weak contacts of the type C21—H21···O1ii [3.3441 (15) Å] (Fig. 3) [symmetry code: (ii) -x + 1, -y, -z + 2].

Related literature top

For details of the synthesis, see: Yao (1964). For resonance-assisted hydrogen bonds and related structures, see: Bertolasi et al. (1993); Bustos, Alvarez-Thon, Barría et al. (2011); Bustos, Alvarez-Thon, Cárcamo, Garland & Sánchez (2011).; Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez (2011); Gilli et al. (1993).

Experimental top

Chemicals: 1,3-diphenylpropane-1,3-dione, p-anisidine and sodium nitrite were procured from Sigma-Aldrich and sodium hydroxide, hydrochloric acid, sodium acetate and solvents from Merck. These chemicals were used without previous purification.

Procedure: A solution of 2.29 g (0.01 mole) of 1,3-diphenylpropane-1,3-dione (98%) in 100 ml of ethanol solution containing 0.4 g (0.01 mole) of sodium hydroxide was buffered by adding 4.80 g of sodium acetate trihydrate. The resulting β-diketonate solution was diluted with water to a volume of about 220 ml and stirred and cooled to -5 °C. A diazonium ion solution was prepared adding 1.24 g (0.01 mole) of p-anisidine (99%) in 8 ml of hydrochloric acid (5 mol/L), cooled to -5 °C, and a saturated aqueous solution containing 0.69 g (0.01 mole) of sodium nitrite was added dropwise . This solution was then added dropwise with vigorous stirring into the buffered β-diketonate solution. During the addition a yellow precipitate was formed which was filtered by suction and washed with an abundant quantity of water. Yield: 95% of crude product. Orange single crystals suitable for X-ray studies were obtained by recrystallization from a concentrated solution of the compound in ethanol.

Refinement top

All hydrogen atoms were found in difference Fourier maps. The hydrogen attached to N2 was refined freely against the diffraction data, but all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å and Uiso(H) = 1.2Ueq (aromatic C) or 1.5Ueq(aliphatic C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The strong intramolecular hydrogen bond (N2–H1···O2) is depicted with a dashed line.
[Figure 2] Fig. 2. Part of the crystal packing showing the inversion-related interaction via C15—H15···O3i weak contacts (dashed lines) and a π-π stacking interaction Cg···Cgi (solid line) [symmetry code: (i) -x + 1, -y + 1, -z + 2].
[Figure 3] Fig. 3. Part of the crystal packing showing the inversion-related interaction via C21—H21···O1ii contacts (dashed lines) [(ii) -x + 1, -y, -z + 2]].
2-[2-(4-methoxyphenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione top
Crystal data top
C22H18N2O3F(000) = 752
Mr = 358.38Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 12.3045 (11) Åθ = 1.8–26.4°
b = 11.055 (1) ŵ = 0.09 mm1
c = 14.2435 (13) ÅT = 150 K
β = 113.683 (1)°Polyhedron, orange
V = 1774.3 (3) Å30.52 × 0.26 × 0.15 mm
Z = 4
Data collection top
Bruker D8 Discover
diffractometer with SMART CCD area detector
2894 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 26.4°, θmin = 1.8°
ϕ and ω scansh = 1415
10646 measured reflectionsk = 1313
3600 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
3600 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H18N2O3V = 1774.3 (3) Å3
Mr = 358.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3045 (11) ŵ = 0.09 mm1
b = 11.055 (1) ÅT = 150 K
c = 14.2435 (13) Å0.52 × 0.26 × 0.15 mm
β = 113.683 (1)°
Data collection top
Bruker D8 Discover
diffractometer with SMART CCD area detector
2894 reflections with I > 2σ(I)
10646 measured reflectionsRint = 0.036
3600 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
3600 reflectionsΔρmin = 0.18 e Å3
249 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23194 (8)0.07143 (8)0.87203 (6)0.0383 (3)
O20.49696 (7)0.03714 (8)1.12916 (6)0.0323 (3)
O30.72539 (8)0.62118 (8)0.93267 (6)0.0344 (3)
N10.39904 (9)0.18280 (9)0.94790 (7)0.0266 (3)
N20.50300 (9)0.22036 (9)1.01218 (8)0.0266 (3)
C10.31024 (11)0.05076 (11)1.09863 (9)0.0270 (4)
C20.35221 (12)0.15824 (11)1.15131 (9)0.0300 (4)
C30.27939 (13)0.22881 (12)1.18252 (10)0.0376 (4)
C40.16617 (13)0.18947 (13)1.16436 (10)0.0410 (5)
C50.12488 (12)0.08089 (13)1.11449 (10)0.0390 (5)
C60.19590 (11)0.01201 (12)1.08006 (9)0.0329 (4)
C70.39245 (11)0.02418 (11)1.06834 (9)0.0266 (4)
C80.34628 (10)0.08883 (11)0.96964 (9)0.0261 (3)
C90.24507 (11)0.03874 (11)0.88019 (9)0.0283 (4)
C100.16409 (10)0.12118 (11)0.79933 (9)0.0285 (4)
C110.10610 (11)0.07481 (12)0.69998 (9)0.0341 (4)
C120.02797 (12)0.14692 (14)0.62317 (10)0.0401 (5)
C130.00466 (12)0.26359 (14)0.64446 (10)0.0431 (5)
C140.06158 (12)0.31001 (13)0.74235 (10)0.0401 (5)
C150.14183 (11)0.23937 (12)0.81968 (10)0.0322 (4)
C160.55535 (10)0.32336 (11)0.98885 (9)0.0246 (4)
C170.49391 (10)0.39449 (10)0.90350 (9)0.0260 (4)
C180.54880 (11)0.49364 (11)0.88215 (9)0.0277 (4)
C190.66431 (11)0.52350 (11)0.94650 (9)0.0272 (4)
C200.72508 (11)0.45238 (11)1.03236 (9)0.0292 (4)
C210.67143 (11)0.35237 (11)1.05282 (9)0.0282 (4)
C220.66773 (12)0.69076 (11)0.84126 (9)0.0338 (4)
H10.5436 (12)0.1775 (13)1.0677 (11)0.041 (4)*
H20.431200.183601.166100.0360*
H30.307300.303801.216200.0450*
H40.116400.237201.186200.0490*
H50.047600.053301.103700.0470*
H60.166500.061301.044000.0390*
H110.120400.006000.685400.0410*
H120.009800.116100.555500.0480*
H130.050600.312100.591800.0520*
H140.045700.390400.756600.0480*
H150.181600.271800.886600.0390*
H170.414300.375100.859800.0310*
H180.507200.541500.823100.0330*
H200.804000.472901.077100.0350*
H210.713900.303201.110700.0340*
H22A0.645400.637600.781300.0510*
H22B0.721900.753600.837300.0510*
H22C0.596400.728700.842600.0510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (6)0.0278 (5)0.0359 (5)0.0048 (4)0.0103 (4)0.0012 (4)
O20.0266 (5)0.0370 (5)0.0308 (5)0.0004 (4)0.0089 (4)0.0049 (4)
O30.0341 (5)0.0326 (5)0.0361 (5)0.0065 (4)0.0137 (4)0.0022 (4)
N10.0258 (6)0.0266 (6)0.0273 (5)0.0003 (4)0.0105 (5)0.0019 (4)
N20.0252 (6)0.0283 (6)0.0248 (5)0.0007 (4)0.0086 (5)0.0016 (4)
C10.0305 (7)0.0269 (7)0.0237 (6)0.0019 (5)0.0111 (5)0.0031 (5)
C20.0370 (7)0.0303 (7)0.0242 (6)0.0004 (5)0.0139 (6)0.0023 (5)
C30.0543 (9)0.0317 (7)0.0291 (6)0.0062 (6)0.0191 (6)0.0013 (6)
C40.0473 (9)0.0464 (9)0.0353 (7)0.0178 (7)0.0228 (7)0.0053 (6)
C50.0316 (8)0.0520 (9)0.0355 (7)0.0072 (6)0.0156 (6)0.0072 (6)
C60.0314 (7)0.0344 (7)0.0319 (7)0.0002 (6)0.0117 (6)0.0010 (6)
C70.0278 (7)0.0251 (6)0.0279 (6)0.0028 (5)0.0122 (6)0.0016 (5)
C80.0263 (6)0.0249 (6)0.0280 (6)0.0011 (5)0.0119 (5)0.0007 (5)
C90.0294 (7)0.0289 (7)0.0289 (6)0.0019 (5)0.0142 (5)0.0018 (5)
C100.0223 (6)0.0343 (7)0.0285 (6)0.0033 (5)0.0099 (5)0.0045 (5)
C110.0305 (7)0.0371 (8)0.0327 (7)0.0066 (6)0.0107 (6)0.0014 (6)
C120.0322 (8)0.0541 (9)0.0295 (7)0.0070 (6)0.0076 (6)0.0046 (6)
C130.0303 (8)0.0575 (10)0.0386 (8)0.0069 (7)0.0107 (6)0.0189 (7)
C140.0362 (8)0.0423 (8)0.0449 (8)0.0098 (6)0.0194 (7)0.0104 (6)
C150.0296 (7)0.0372 (8)0.0317 (7)0.0017 (6)0.0143 (6)0.0037 (6)
C160.0261 (7)0.0251 (7)0.0251 (6)0.0007 (5)0.0128 (5)0.0022 (5)
C170.0236 (6)0.0281 (7)0.0251 (6)0.0003 (5)0.0086 (5)0.0032 (5)
C180.0296 (7)0.0283 (7)0.0255 (6)0.0022 (5)0.0113 (5)0.0011 (5)
C190.0285 (7)0.0265 (6)0.0305 (6)0.0015 (5)0.0158 (5)0.0036 (5)
C200.0228 (6)0.0329 (7)0.0300 (6)0.0000 (5)0.0086 (5)0.0030 (5)
C210.0278 (7)0.0310 (7)0.0244 (6)0.0039 (5)0.0090 (5)0.0012 (5)
C220.0379 (8)0.0295 (7)0.0382 (7)0.0017 (6)0.0197 (6)0.0027 (6)
Geometric parameters (Å, º) top
O1—C91.2280 (15)C16—C211.3884 (19)
O2—C71.2368 (16)C16—C171.3890 (17)
O3—C191.3743 (16)C17—C181.3839 (18)
O3—C221.4311 (15)C18—C191.3866 (19)
N1—N21.3062 (15)C19—C201.3922 (17)
N1—C81.3259 (16)C20—C211.3776 (18)
N2—C161.4120 (16)C2—H20.9500
N2—H10.884 (14)C3—H30.9500
C1—C61.391 (2)C4—H40.9500
C1—C71.4988 (19)C5—H50.9500
C1—C21.3893 (17)C6—H60.9500
C2—C31.389 (2)C11—H110.9500
C3—C41.381 (2)C12—H120.9500
C4—C51.383 (2)C13—H130.9500
C5—C61.389 (2)C14—H140.9500
C7—C81.4725 (17)C15—H150.9500
C8—C91.4853 (18)C17—H170.9500
C9—C101.4927 (17)C18—H180.9500
C10—C111.4012 (17)C20—H200.9500
C10—C151.3892 (18)C21—H210.9500
C11—C121.3826 (19)C22—H22A0.9800
C12—C131.381 (2)C22—H22B0.9800
C13—C141.3833 (19)C22—H22C0.9800
C14—C151.3872 (19)
C19—O3—C22116.93 (10)C18—C19—C20119.50 (12)
N2—N1—C8121.26 (10)C19—C20—C21120.34 (12)
N1—N2—C16120.15 (10)C16—C21—C20120.04 (11)
N1—N2—H1119.9 (10)C1—C2—H2120.00
C16—N2—H1119.7 (10)C3—C2—H2120.00
C2—C1—C6119.63 (13)C2—C3—H3120.00
C2—C1—C7118.74 (13)C4—C3—H3120.00
C6—C1—C7121.55 (11)C3—C4—H4120.00
C1—C2—C3120.37 (14)C5—C4—H4120.00
C2—C3—C4119.68 (13)C4—C5—H5120.00
C3—C4—C5120.28 (14)C6—C5—H5120.00
C4—C5—C6120.25 (14)C1—C6—H6120.00
C1—C6—C5119.74 (12)C5—C6—H6120.00
O2—C7—C8120.42 (12)C10—C11—H11120.00
O2—C7—C1119.64 (11)C12—C11—H11120.00
C1—C7—C8119.80 (11)C11—C12—H12120.00
N1—C8—C9114.35 (10)C13—C12—H12120.00
N1—C8—C7124.47 (11)C12—C13—H13120.00
C7—C8—C9120.47 (11)C14—C13—H13120.00
O1—C9—C10120.72 (11)C13—C14—H14120.00
C8—C9—C10120.27 (11)C15—C14—H14120.00
O1—C9—C8118.95 (11)C10—C15—H15120.00
C11—C10—C15119.45 (12)C14—C15—H15120.00
C9—C10—C11117.85 (11)C16—C17—H17120.00
C9—C10—C15122.66 (11)C18—C17—H17120.00
C10—C11—C12119.89 (12)C17—C18—H18120.00
C11—C12—C13120.29 (12)C19—C18—H18120.00
C12—C13—C14120.13 (13)C19—C20—H20120.00
C13—C14—C15120.15 (13)C21—C20—H20120.00
C10—C15—C14120.06 (12)C16—C21—H21120.00
C17—C16—C21119.89 (11)C20—C21—H21120.00
N2—C16—C17121.54 (11)O3—C22—H22A109.00
N2—C16—C21118.56 (11)O3—C22—H22B109.00
C16—C17—C18119.91 (12)O3—C22—H22C109.00
C17—C18—C19120.30 (11)H22A—C22—H22B110.00
O3—C19—C20115.97 (11)H22A—C22—H22C109.00
O3—C19—C18124.52 (11)H22B—C22—H22C109.00
C22—O3—C19—C184.76 (18)C7—C8—C9—O130.36 (19)
C22—O3—C19—C20175.85 (11)C7—C8—C9—C10152.35 (12)
C8—N1—N2—C16177.67 (11)O1—C9—C10—C1124.5 (2)
N2—N1—C8—C74.91 (19)O1—C9—C10—C15153.45 (14)
N2—N1—C8—C9165.34 (11)C8—C9—C10—C11152.71 (13)
N1—N2—C16—C176.82 (18)C8—C9—C10—C1529.3 (2)
N1—N2—C16—C21172.50 (12)C9—C10—C11—C12178.39 (13)
C6—C1—C2—C32.05 (18)C15—C10—C11—C120.3 (2)
C7—C1—C2—C3178.65 (11)C9—C10—C15—C14177.10 (13)
C2—C1—C6—C50.13 (18)C11—C10—C15—C140.9 (2)
C7—C1—C6—C5176.37 (11)C10—C11—C12—C131.5 (2)
C2—C1—C7—O241.22 (17)C11—C12—C13—C141.6 (2)
C2—C1—C7—C8143.16 (12)C12—C13—C14—C150.4 (2)
C6—C1—C7—O2135.31 (13)C13—C14—C15—C100.9 (2)
C6—C1—C7—C840.31 (17)N2—C16—C17—C18178.94 (12)
C1—C2—C3—C42.43 (19)C21—C16—C17—C180.37 (19)
C2—C3—C4—C50.6 (2)N2—C16—C21—C20179.88 (12)
C3—C4—C5—C61.6 (2)C17—C16—C21—C200.79 (19)
C4—C5—C6—C11.95 (19)C16—C17—C18—C191.03 (19)
O2—C7—C8—N116.2 (2)C17—C18—C19—O3178.83 (12)
O2—C7—C8—C9153.45 (12)C17—C18—C19—C200.53 (19)
C1—C7—C8—N1159.35 (12)O3—C19—C20—C21179.95 (12)
C1—C7—C8—C930.96 (18)C18—C19—C20—C210.6 (2)
N1—C8—C9—O1140.32 (13)C19—C20—C21—C161.3 (2)
N1—C8—C9—C1036.97 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.884 (14)1.977 (15)2.6427 (14)131.0 (14)
C15—H15···O3i0.952.643.5859 (16)174
C21—H21···O1ii0.952.633.3441 (15)132
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC22H18N2O3
Mr358.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.3045 (11), 11.055 (1), 14.2435 (13)
β (°) 113.683 (1)
V3)1774.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.26 × 0.15
Data collection
DiffractometerBruker D8 Discover
diffractometer with SMART CCD area detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10646, 3600, 2894
Rint0.036
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.04
No. of reflections3600
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-PC (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.884 (14)1.977 (15)2.6427 (14)131.0 (14)
C15—H15···O3i0.952.643.5859 (16)174
C21—H21···O1ii0.952.633.3441 (15)132
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

The authors thank the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT; grant Nos. 11100446 and 1080269) and the Universidad Andrés Bello (grant No. DI-06–10-R) for financial assistance.

References

First citationBertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223–2228.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBustos, C., Alvarez-Thon, L., Barría, D., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Ibañez, A. & Sánchez, C. (2011). Acta Cryst. E67, o1450–o1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564–576.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H. C. (1964). J. Org. Chem. 29, 2959–2962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1830-o1831
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds