metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ-3,5-di­nitro­benzoato)(μ-3,5-di­nitro­benzoic acid)rubidium]

aXi'an Medical University, Department of Pharmacy, Hanguang Road No.137, Xi'an 710021, Shaanxi, People's Republic of China
*Correspondence e-mail: miaoyanqing66@163.com

(Received 10 May 2011; accepted 26 June 2011; online 6 July 2011)

The asymmetric unit of the title compound, [Rb(C7H3N2O6)(C7H4N2O6)]n, comprises an Rb+ cation, a 3,5-dinitro­benzoate anion and a 3,5-dinitro­benzoic acid ligand. The Rb+ cation is nine-coordinated by O atoms from four 3,5-dinitro­benzoate anions and three neutral 3,5-dinitro­benzoic acid ligands. The metal atom is firstly linked by four bridging carboxyl groups, forming a binuclear motif, which is further linked by the nitro groups into a two-dimensional framework along the [110] direction. A short O—H⋯O hydrogen bond between two adjacent carboxy/carboxylate groups occurs.

Related literature

For 3,5-dinitro­benzoate complexes, see: Askarinejad et al. (2007[Askarinejad, A., Fadaei, M. R., Morsali, A. & Mahjoub, A. R. (2007). J. Coord. Chem. 60, 753-761.]); Madej et al. (2007[Madej, A., Oleksyn, B. J. & Śliwiński, J. (2007). Pol. J. Chem. 81, 1201-1218.]); Zhu et al. (2001[Zhu, H. G., Yang, G., Chen, X. M. & Ng, S. W. (2001). Main Group Met. Chem. 24, 449-450.]). For Rb—O bond lengths, see: Cametti et al. (2005[Cametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831-3837.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb(C7H3N2O6)(C7H4N2O6)]

  • Mr = 508.71

  • Triclinic, [P \overline 1]

  • a = 9.4823 (8) Å

  • b = 9.8136 (8) Å

  • c = 11.4929 (11) Å

  • α = 68.425 (1)°

  • β = 83.821 (1)°

  • γ = 67.538 (1)°

  • V = 918.42 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 293 K

  • 0.40 × 0.31 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.368, Tmax = 0.635

  • 4661 measured reflections

  • 3219 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.08

  • 3219 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O1 0.96 (4) 1.52 (4) 2.470 (2) 168 (4)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 3,5-dinitrobenzoic acid is an interesting ligand with one carboxylic and two nitro groups for coordination. In the structural investigation of 3,5-dinitrobenzoic acid complexes, it has been found that the 3,5-dinitrobenzoate moiety functions as a multidentate ligand (Askarinejad et al., 2007; Madej et al., 2007; Zhu et al., 2001) with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, a new Rb complex obtained by the reaction of 3,5-dinitrobenzoic acid and RbOH in water.

The asymmetric unit of the title compound (I) comprises a Rb+ cation, a 3,5-dinitrobenzoate anion and a 3,5-dinitrobenzoic acid ligand (Fig. 1). The central cation is coordinated to nine O atoms from four 3,5-dinitrobenzoate anions and three neutral 3,5-dinitrobenzoic acid ligands with the Rb—O distances ranging from 2.7973 (19) Å to 3.403 (2) Å, which are well within the range reported in the literature (Cametti et al., 2005). The Rb centre is firstly linked by four bridging carboxylic groups to form a binuclear motif, which is further linked by the nitro groups to give the two-dimensional framework of the title compound (Fig. 2).

Related literature top

For 3,5-dinitrobenzoate complexes, see: Askarinejad et al. (2007); Madej et al. (2007); Zhu et al. (2001). For Rb—O bond lengths, see: Cametti et al. (2005).

Experimental top

Analysis grade 3,5-dinitrobenzoic acid and RbOH (purity > 99.5%, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were commercially available and used without further purification. To a solution of 20 mmol 3,5-dinitrobenzoic acid in 50 ml bidistilled water, a solution of 10 mmol RbOH in 40 ml bidistilled water was added dropwise at room temperature. After vigorous stirring for 3 h, the resulting solution was then evaporated to a volume of about 20 ml in vacuum and filtered hot. The filtrate was then set aside for crystallization at room temperature. Two weeks later, yellow block crystals of the title compound suitable for X-ray determination were isolated.

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C – H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Oxygen-bound H atom was tentatively located in difference Fourier maps and was refined independently.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, - 1 + y, z; (iii) 2 - x, - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. The two-dimensional framework of (I).
Poly[(µ-3,5-dinitrobenzoato)(µ-3,5-dinitrobenzoic acid)rubidium] top
Crystal data top
[Rb(C7H3N2O6)(C7H4N2O6)]Z = 2
Mr = 508.71F(000) = 504
Triclinic, P1Dx = 1.840 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4823 (8) ÅCell parameters from 2183 reflections
b = 9.8136 (8) Åθ = 2.3–25.6°
c = 11.4929 (11) ŵ = 2.77 mm1
α = 68.425 (1)°T = 293 K
β = 83.821 (1)°Block, yellow
γ = 67.538 (1)°0.40 × 0.31 × 0.20 mm
V = 918.42 (14) Å3
Data collection top
Bruker SMART CCD
diffractometer
3219 independent reflections
Radiation source: fine-focus sealed tube2758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.368, Tmax = 0.635k = 1011
4661 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.0239P]
where P = (Fo2 + 2Fc2)/3
3219 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Rb(C7H3N2O6)(C7H4N2O6)]γ = 67.538 (1)°
Mr = 508.71V = 918.42 (14) Å3
Triclinic, P1Z = 2
a = 9.4823 (8) ÅMo Kα radiation
b = 9.8136 (8) ŵ = 2.77 mm1
c = 11.4929 (11) ÅT = 293 K
α = 68.425 (1)°0.40 × 0.31 × 0.20 mm
β = 83.821 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3219 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2758 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.635Rint = 0.015
4661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
3219 reflectionsΔρmin = 0.38 e Å3
284 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.60363 (3)0.23726 (3)0.63137 (2)0.04777 (12)
O10.6222 (2)0.5041 (3)0.74637 (18)0.0566 (5)
O20.4151 (2)0.5791 (2)0.62901 (18)0.0501 (5)
O30.0505 (2)0.9948 (3)0.6899 (2)0.0726 (7)
O40.0484 (3)1.1013 (3)0.8223 (2)0.0801 (7)
O50.3968 (3)0.9004 (3)1.0902 (2)0.0794 (7)
O60.5892 (3)0.6992 (3)1.0817 (2)0.0817 (7)
O70.7938 (2)0.4276 (2)0.58487 (18)0.0465 (4)
H10.717 (5)0.463 (5)0.640 (4)0.108 (14)*
O80.6987 (2)0.6736 (2)0.44553 (19)0.0532 (5)
O90.9040 (3)0.7679 (3)0.0193 (2)0.0801 (7)
O101.1097 (3)0.5933 (3)0.0103 (2)0.0751 (7)
O111.3434 (3)0.1010 (3)0.3122 (2)0.0779 (7)
O121.2396 (3)0.0396 (3)0.4887 (2)0.0705 (6)
C10.3944 (3)0.6901 (3)0.7846 (2)0.0369 (5)
C20.2455 (3)0.7921 (3)0.7486 (2)0.0382 (6)
H20.19560.79070.68390.046*
C30.1717 (3)0.8963 (3)0.8101 (2)0.0402 (6)
C40.2396 (3)0.9027 (3)0.9064 (2)0.0443 (6)
H30.18880.97450.94610.053*
C50.3874 (3)0.7969 (3)0.9414 (2)0.0403 (6)
C60.4654 (3)0.6916 (3)0.8829 (2)0.0385 (6)
H40.56500.62220.90910.046*
C70.4807 (3)0.5831 (3)0.7125 (2)0.0423 (6)
C80.9000 (3)0.4805 (3)0.3865 (2)0.0366 (5)
C90.8963 (3)0.5842 (3)0.2643 (2)0.0407 (6)
H50.82160.68520.23700.049*
C101.0068 (3)0.5329 (3)0.1847 (2)0.0418 (6)
C111.1200 (3)0.3858 (3)0.2214 (2)0.0425 (6)
H61.19360.35400.16660.051*
C121.1197 (3)0.2878 (3)0.3423 (2)0.0387 (6)
C131.0115 (3)0.3310 (3)0.4255 (2)0.0381 (6)
H71.01360.26060.50660.046*
C140.7854 (3)0.5361 (3)0.4767 (3)0.0411 (6)
N10.0124 (3)1.0057 (3)0.7712 (2)0.0519 (6)
N20.4643 (3)0.7987 (3)1.0451 (2)0.0549 (6)
N31.0066 (3)0.6400 (3)0.0554 (2)0.0546 (6)
N41.2440 (3)0.1311 (3)0.3850 (2)0.0516 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.04757 (17)0.04046 (16)0.04939 (18)0.00983 (12)0.00575 (11)0.01423 (12)
O10.0394 (10)0.0773 (15)0.0520 (12)0.0082 (10)0.0055 (9)0.0366 (11)
O20.0509 (11)0.0616 (12)0.0454 (11)0.0191 (10)0.0037 (9)0.0297 (10)
O30.0460 (12)0.0759 (16)0.0887 (17)0.0075 (11)0.0183 (11)0.0315 (14)
O40.0614 (14)0.0672 (15)0.0889 (18)0.0102 (12)0.0024 (12)0.0369 (14)
O50.0976 (18)0.0906 (18)0.0631 (15)0.0270 (15)0.0006 (13)0.0492 (14)
O60.0751 (16)0.0908 (19)0.0759 (17)0.0125 (15)0.0291 (13)0.0365 (14)
O70.0445 (10)0.0532 (12)0.0453 (11)0.0170 (9)0.0116 (9)0.0251 (10)
O80.0423 (10)0.0490 (12)0.0665 (13)0.0068 (10)0.0019 (9)0.0293 (10)
O90.113 (2)0.0466 (14)0.0556 (14)0.0148 (14)0.0025 (13)0.0045 (11)
O100.1009 (18)0.0685 (15)0.0537 (14)0.0412 (14)0.0285 (13)0.0160 (12)
O110.0647 (14)0.0471 (13)0.0999 (19)0.0078 (11)0.0371 (13)0.0251 (12)
O120.0735 (15)0.0445 (12)0.0622 (14)0.0041 (11)0.0064 (11)0.0044 (11)
C10.0396 (13)0.0394 (14)0.0306 (13)0.0163 (11)0.0077 (10)0.0113 (11)
C20.0401 (14)0.0439 (15)0.0319 (13)0.0202 (12)0.0038 (10)0.0107 (11)
C30.0370 (13)0.0360 (14)0.0389 (14)0.0106 (11)0.0036 (11)0.0076 (11)
C40.0529 (16)0.0398 (15)0.0389 (15)0.0154 (13)0.0085 (12)0.0164 (12)
C50.0459 (15)0.0440 (15)0.0310 (13)0.0175 (12)0.0036 (11)0.0130 (11)
C60.0348 (13)0.0448 (15)0.0316 (13)0.0128 (12)0.0035 (10)0.0114 (11)
C70.0425 (15)0.0494 (16)0.0353 (14)0.0182 (13)0.0079 (11)0.0159 (12)
C80.0341 (12)0.0391 (14)0.0417 (14)0.0148 (11)0.0015 (10)0.0188 (12)
C90.0399 (14)0.0374 (14)0.0460 (15)0.0111 (12)0.0031 (11)0.0182 (12)
C100.0515 (15)0.0395 (14)0.0374 (14)0.0224 (13)0.0017 (12)0.0111 (11)
C110.0454 (14)0.0424 (15)0.0454 (15)0.0203 (13)0.0146 (12)0.0211 (12)
C120.0372 (13)0.0319 (13)0.0478 (15)0.0125 (11)0.0048 (11)0.0161 (11)
C130.0411 (13)0.0380 (14)0.0384 (14)0.0187 (12)0.0040 (11)0.0137 (11)
C140.0314 (13)0.0476 (16)0.0524 (17)0.0141 (12)0.0014 (11)0.0271 (14)
N10.0431 (13)0.0441 (14)0.0543 (15)0.0085 (11)0.0039 (11)0.0105 (12)
N20.0658 (17)0.0629 (17)0.0408 (13)0.0243 (14)0.0014 (12)0.0223 (12)
N30.0771 (18)0.0437 (15)0.0466 (14)0.0293 (14)0.0058 (13)0.0138 (12)
N40.0479 (14)0.0381 (13)0.0643 (17)0.0123 (11)0.0093 (12)0.0192 (12)
Geometric parameters (Å, º) top
Rb1—O8i2.7973 (19)O12—N41.208 (3)
Rb1—O2i2.853 (2)O12—Rb1iii3.274 (2)
Rb1—O72.9421 (19)C1—C21.381 (3)
Rb1—O5ii2.981 (2)C1—C61.384 (4)
Rb1—O11iii2.984 (2)C1—C71.515 (3)
Rb1—O23.132 (2)C2—C31.383 (4)
Rb1—O3iv3.195 (2)C2—H20.9300
Rb1—O12iii3.274 (2)C3—C41.371 (4)
Rb1—O13.403 (2)C3—N11.479 (3)
O1—C71.284 (3)C4—C51.381 (4)
O2—C71.218 (3)C4—H30.9300
O2—Rb1i2.853 (2)C5—C61.373 (4)
O3—N11.217 (3)C5—N21.472 (3)
O3—Rb1v3.195 (2)C6—H40.9300
O4—N11.215 (3)C8—C131.379 (3)
O5—N21.223 (3)C8—C91.394 (4)
O5—Rb1ii2.981 (2)C8—C141.508 (3)
O6—N21.206 (3)C9—C101.385 (4)
O7—C141.292 (3)C9—H50.9300
O7—H10.96 (4)C10—C111.371 (4)
O8—C141.219 (3)C10—N31.471 (3)
O8—Rb1i2.7973 (19)C11—C121.369 (4)
O9—N31.210 (3)C11—H60.9300
O10—N31.220 (3)C12—C131.379 (3)
O11—N41.215 (3)C12—N41.476 (3)
O11—Rb1iii2.984 (2)C13—H70.9300
O8i—Rb1—O2i74.83 (6)C3—C2—H2120.5
O8i—Rb1—O7130.02 (6)C4—C3—C2122.9 (2)
O2i—Rb1—O770.65 (5)C4—C3—N1118.1 (2)
O8i—Rb1—O5ii104.14 (7)C2—C3—N1119.0 (2)
O2i—Rb1—O5ii169.95 (6)C3—C4—C5116.3 (2)
O7—Rb1—O5ii103.80 (6)C3—C4—H3121.8
O8i—Rb1—O11iii90.51 (7)C5—C4—H3121.8
O2i—Rb1—O11iii114.53 (6)C6—C5—C4122.9 (2)
O7—Rb1—O11iii136.55 (6)C6—C5—N2118.9 (2)
O5ii—Rb1—O11iii75.35 (7)C4—C5—N2118.2 (2)
O8i—Rb1—O270.73 (5)C5—C6—C1119.3 (2)
O2i—Rb1—O278.03 (5)C5—C6—H4120.4
O7—Rb1—O267.61 (5)C1—C6—H4120.4
O5ii—Rb1—O292.15 (6)O2—C7—O1125.6 (2)
O11iii—Rb1—O2154.45 (6)O2—C7—C1119.8 (2)
O8i—Rb1—O3iv152.21 (6)O1—C7—C1114.6 (2)
O2i—Rb1—O3iv105.72 (6)C13—C8—C9120.1 (2)
O7—Rb1—O3iv73.40 (6)C13—C8—C14120.6 (2)
O5ii—Rb1—O3iv79.97 (7)C9—C8—C14119.2 (2)
O11iii—Rb1—O3iv63.58 (7)C10—C9—C8118.2 (2)
O2—Rb1—O3iv137.02 (6)C10—C9—H5120.9
O8i—Rb1—O12iii97.66 (6)C8—C9—H5120.9
O2i—Rb1—O12iii78.90 (6)C11—C10—C9122.9 (2)
O7—Rb1—O12iii109.61 (6)C11—C10—N3117.6 (2)
O5ii—Rb1—O12iii111.08 (6)C9—C10—N3119.5 (2)
O11iii—Rb1—O12iii39.61 (6)C12—C11—C10117.0 (2)
O2—Rb1—O12iii156.22 (6)C12—C11—H6121.5
O3iv—Rb1—O12iii56.26 (6)C10—C11—H6121.5
O8i—Rb1—O1108.63 (5)C11—C12—C13122.9 (2)
O2i—Rb1—O198.35 (5)C11—C12—N4117.8 (2)
O7—Rb1—O145.08 (5)C13—C12—N4119.3 (2)
O5ii—Rb1—O172.34 (6)C12—C13—C8118.9 (2)
O11iii—Rb1—O1145.53 (6)C12—C13—H7120.6
O2—Rb1—O139.54 (5)C8—C13—H7120.6
O3iv—Rb1—O198.85 (6)O8—C14—O7126.1 (2)
O12iii—Rb1—O1151.95 (5)O8—C14—C8120.0 (3)
C7—O1—Rb187.28 (15)O7—C14—C8113.8 (2)
C7—O2—Rb1i127.37 (18)O4—N1—O3123.7 (3)
C7—O2—Rb1101.53 (17)O4—N1—C3118.1 (3)
Rb1i—O2—Rb1101.97 (5)O3—N1—C3118.2 (2)
N1—O3—Rb1v112.76 (17)O6—N2—O5123.7 (3)
N2—O5—Rb1ii111.6 (2)O6—N2—C5118.4 (2)
C14—O7—Rb1119.78 (15)O5—N2—C5117.9 (3)
C14—O7—H1113 (3)O6—N2—Rb1ii86.28 (17)
Rb1—O7—H174 (3)O5—N2—Rb1ii50.10 (15)
C14—O8—Rb1i120.61 (16)C5—N2—Rb1ii137.66 (17)
N4—O11—Rb1iii100.05 (17)O9—N3—O10123.6 (3)
N4—O12—Rb1iii86.09 (16)O9—N3—C10118.7 (2)
C2—C1—C6119.5 (2)O10—N3—C10117.7 (3)
C2—C1—C7119.8 (2)O12—N4—O11123.8 (2)
C6—C1—C7120.6 (2)O12—N4—C12118.5 (2)
C1—C2—C3119.0 (2)O11—N4—C12117.7 (2)
C1—C2—H2120.5
O8i—Rb1—O1—C74.89 (16)Rb1—O1—C7—C1155.4 (2)
O2i—Rb1—O1—C771.84 (15)Rb1—O1—C7—Rb1i67.82 (12)
O7—Rb1—O1—C7123.58 (17)C2—C1—C7—O25.5 (4)
O5ii—Rb1—O1—C7104.28 (16)C6—C1—C7—O2177.5 (2)
O11iii—Rb1—O1—C7125.39 (16)C2—C1—C7—O1173.8 (2)
O2—Rb1—O1—C712.30 (14)C6—C1—C7—O13.3 (4)
O3iv—Rb1—O1—C7179.29 (15)C2—C1—C7—Rb1i36.6 (3)
O12iii—Rb1—O1—C7153.88 (15)C6—C1—C7—Rb1i140.5 (2)
N4iii—Rb1—O1—C7163.41 (14)C13—C8—C9—C100.1 (4)
C14i—Rb1—O1—C72.46 (15)C14—C8—C9—C10177.2 (2)
N2ii—Rb1—O1—C792.20 (16)C8—C9—C10—C110.7 (4)
O8i—Rb1—O2—C7149.51 (17)C8—C9—C10—N3179.6 (2)
O2i—Rb1—O2—C7132.57 (18)C9—C10—C11—C120.5 (4)
O7—Rb1—O2—C758.77 (16)N3—C10—C11—C12179.4 (2)
O5ii—Rb1—O2—C745.28 (17)C10—C11—C12—C130.5 (4)
O11iii—Rb1—O2—C7104.7 (2)C10—C11—C12—N4177.8 (2)
O3iv—Rb1—O2—C732.3 (2)C11—C12—C13—C81.3 (4)
O12iii—Rb1—O2—C7146.79 (17)N4—C12—C13—C8177.0 (2)
O1—Rb1—O2—C713.23 (15)C9—C8—C13—C121.0 (4)
C14i—Rb1—O2—C7154.64 (18)C14—C8—C13—C12176.2 (2)
N2ii—Rb1—O2—C745.08 (16)Rb1i—O8—C14—O781.4 (3)
O8i—Rb1—O2—Rb1i77.92 (6)Rb1i—O8—C14—C8100.6 (2)
O2i—Rb1—O2—Rb1i0.0Rb1—O7—C14—O889.7 (3)
O7—Rb1—O2—Rb1i73.80 (6)Rb1—O7—C14—C892.2 (2)
O5ii—Rb1—O2—Rb1i177.84 (7)Rb1—O7—C14—Rb1i44.33 (18)
O11iii—Rb1—O2—Rb1i122.72 (14)C13—C8—C14—O8171.6 (2)
O3iv—Rb1—O2—Rb1i100.29 (9)C9—C8—C14—O85.6 (4)
O12iii—Rb1—O2—Rb1i14.22 (17)C13—C8—C14—O76.6 (3)
O1—Rb1—O2—Rb1i119.33 (9)C9—C8—C14—O7176.2 (2)
C14i—Rb1—O2—Rb1i72.80 (7)C13—C8—C14—Rb1i139.52 (19)
N2ii—Rb1—O2—Rb1i177.65 (7)C9—C8—C14—Rb1i43.2 (3)
O8i—Rb1—O7—C1439.1 (2)Rb1v—O3—N1—O41.9 (4)
O2i—Rb1—O7—C149.82 (17)Rb1v—O3—N1—C3178.04 (16)
O5ii—Rb1—O7—C14161.43 (18)C4—C3—N1—O43.4 (4)
O11iii—Rb1—O7—C14115.44 (19)C2—C3—N1—O4176.7 (3)
O2—Rb1—O7—C1474.83 (18)C4—C3—N1—O3176.5 (3)
O3iv—Rb1—O7—C14123.67 (18)C2—C3—N1—O33.4 (4)
O12iii—Rb1—O7—C1479.84 (18)Rb1ii—O5—N2—O648.8 (4)
O1—Rb1—O7—C14114.75 (19)Rb1ii—O5—N2—C5130.3 (2)
N4iii—Rb1—O7—C1499.53 (18)C6—C5—N2—O65.8 (4)
C14i—Rb1—O7—C1445.6 (2)C4—C5—N2—O6174.8 (3)
N2ii—Rb1—O7—C14144.50 (18)C6—C5—N2—O5175.1 (3)
C6—C1—C2—C31.4 (4)C4—C5—N2—O54.3 (4)
C7—C1—C2—C3175.7 (2)C6—C5—N2—Rb1ii124.7 (2)
C1—C2—C3—C40.3 (4)C4—C5—N2—Rb1ii55.9 (4)
C1—C2—C3—N1179.8 (2)C11—C10—N3—O9176.9 (3)
C2—C3—C4—C50.9 (4)C9—C10—N3—O94.2 (4)
N1—C3—C4—C5178.9 (2)C11—C10—N3—O102.2 (4)
C3—C4—C5—C61.1 (4)C9—C10—N3—O10176.8 (3)
C3—C4—C5—N2179.5 (2)Rb1iii—O12—N4—O1132.7 (3)
C4—C5—C6—C10.1 (4)Rb1iii—O12—N4—C12145.8 (2)
N2—C5—C6—C1179.4 (2)Rb1iii—O11—N4—O1236.9 (3)
C2—C1—C6—C51.2 (4)Rb1iii—O11—N4—C12141.63 (19)
C7—C1—C6—C5175.9 (2)C11—C12—N4—O12175.2 (3)
Rb1i—O2—C7—O186.6 (3)C13—C12—N4—O126.5 (4)
Rb1—O2—C7—O128.4 (3)C11—C12—N4—O113.4 (4)
Rb1i—O2—C7—C192.5 (3)C13—C12—N4—O11174.9 (3)
Rb1—O2—C7—C1152.5 (2)C11—C12—N4—Rb1iii72.2 (4)
Rb1—O2—C7—Rb1i114.97 (17)C13—C12—N4—Rb1iii109.5 (3)
Rb1—O1—C7—O225.4 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y, z+1; (iv) x+1, y1, z; (v) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O10.96 (4)1.52 (4)2.470 (2)168 (4)

Experimental details

Crystal data
Chemical formula[Rb(C7H3N2O6)(C7H4N2O6)]
Mr508.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4823 (8), 9.8136 (8), 11.4929 (11)
α, β, γ (°)68.425 (1), 83.821 (1), 67.538 (1)
V3)918.42 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.40 × 0.31 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.368, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
4661, 3219, 2758
Rint0.015
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.08
No. of reflections3219
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.38

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O10.96 (4)1.52 (4)2.470 (2)168 (4)
 

Acknowledgements

This work was supported financially by grants from the Scientific Research Plan Projects of Shaanxi Province Department of Health (2010D54), the Natural Science Research Plan Projects of Shaanxi Science and Technology Department (SJ08B19) and the Scientific Research Plan Projects of Shaanxi Education Department (09 J K709). Chunye Liu is thanked for the data collection and Lining Yang for the structure solution and refinement.

References

First citationAskarinejad, A., Fadaei, M. R., Morsali, A. & Mahjoub, A. R. (2007). J. Coord. Chem. 60, 753–761.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831–3837.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMadej, A., Oleksyn, B. J. & Śliwiński, J. (2007). Pol. J. Chem. 81, 1201–1218.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. G., Yang, G., Chen, X. M. & Ng, S. W. (2001). Main Group Met. Chem. 24, 449–450.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds