organic compounds
2-(4-Iodophenoxy)acetamide
aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
The molecule of the title compound, C8H8INO2, amide-typical resonance shortens the nominal C—N single bond to 1.322 (7) Å. In the crystal, hydrogen bonds involving both nitrogen-bound H atoms as well as C—H⋯O contacts connect the molecules into double layers approximately perpendicular to the crystallographic b axis. No π-stacking is apparent in the crystal structure.
Related literature
For the et al. (1987) and of 2-(4-chloro-2-methylphenoxy)acetamide, see: Rao et al. (1987). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). For the preparation, see: Glover et al. (1973).
of 2-(4-nitrophenoxy)acetamide, see: Lakshmi RaoExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811025840/aa2016sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536811025840/aa2016Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536811025840/aa2016Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536811025840/aa2016Isup4.cml
The compound was prepared upon reacting 2-phenoxyacetamide with tert-butyl hypochlorite and iodine according to a published procedure (Glover et al., 1973).
Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 Å for the methylene group and C—H 0.95 Å for aromatic carbon atoms) and were included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C). Nitrogen-bound H-atoms were placed in calculated positions (N—H 0.88 Å) and were included in the in the riding model approximation, with U(H) set to 1.2Ueq(N).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C8H8INO2 | F(000) = 528 |
Mr = 277.05 | Dx = 1.967 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5293 reflections |
a = 5.1411 (4) Å | θ = 3.1–28.2° |
b = 26.473 (2) Å | µ = 3.38 mm−1 |
c = 7.2960 (7) Å | T = 200 K |
β = 109.564 (3)° | Rod, colourless |
V = 935.66 (14) Å3 | 0.55 × 0.18 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2282 independent reflections |
Radiation source: fine-focus sealed tube | 2089 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 28.2°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.824, Tmax = 1.000 | k = −34→35 |
8332 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.29 | w = 1/[σ2(Fo2) + (0.0042P)2 + 6.0795P] where P = (Fo2 + 2Fc2)/3 |
2282 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 1.50 e Å−3 |
0 restraints | Δρmin = −1.58 e Å−3 |
C8H8INO2 | V = 935.66 (14) Å3 |
Mr = 277.05 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.1411 (4) Å | µ = 3.38 mm−1 |
b = 26.473 (2) Å | T = 200 K |
c = 7.2960 (7) Å | 0.55 × 0.18 × 0.10 mm |
β = 109.564 (3)° |
Bruker APEXII CCD diffractometer | 2282 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2089 reflections with I > 2σ(I) |
Tmin = 0.824, Tmax = 1.000 | Rint = 0.020 |
8332 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.29 | Δρmax = 1.50 e Å−3 |
2282 reflections | Δρmin = −1.58 e Å−3 |
109 parameters |
x | y | z | Uiso*/Ueq | ||
I1 | 0.81735 (14) | 0.20849 (2) | −0.25506 (9) | 0.0685 (2) | |
O1 | 0.6872 (8) | 0.01765 (17) | 0.7947 (6) | 0.0390 (10) | |
O2 | 1.0024 (8) | 0.08086 (17) | 0.4969 (6) | 0.0416 (10) | |
N1 | 1.1340 (9) | 0.0300 (2) | 0.8286 (7) | 0.0367 (11) | |
H71 | 1.1917 | 0.0152 | 0.9432 | 0.044* | |
H72 | 1.2543 | 0.0422 | 0.7781 | 0.044* | |
C1 | 0.8667 (10) | 0.0339 (2) | 0.7322 (8) | 0.0278 (11) | |
C2 | 0.7756 (11) | 0.0587 (2) | 0.5354 (9) | 0.0359 (13) | |
H21 | 0.6883 | 0.0332 | 0.4343 | 0.043* | |
H22 | 0.6365 | 0.0850 | 0.5302 | 0.043* | |
C11 | 0.9411 (12) | 0.1079 (2) | 0.3245 (9) | 0.0345 (12) | |
C12 | 1.1409 (13) | 0.1428 (2) | 0.3187 (10) | 0.0399 (14) | |
H12 | 1.3013 | 0.1474 | 0.4296 | 0.048* | |
C13 | 1.1073 (13) | 0.1706 (2) | 0.1538 (11) | 0.0425 (15) | |
H13 | 1.2466 | 0.1936 | 0.1489 | 0.051* | |
C14 | 0.8721 (14) | 0.1650 (2) | −0.0038 (10) | 0.0408 (14) | |
C15 | 0.6678 (15) | 0.1314 (3) | 0.0021 (10) | 0.0440 (15) | |
H15 | 0.5036 | 0.1281 | −0.1069 | 0.053* | |
C16 | 0.7036 (13) | 0.1029 (3) | 0.1658 (10) | 0.0435 (15) | |
H16 | 0.5647 | 0.0797 | 0.1699 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0910 (5) | 0.0588 (3) | 0.0581 (3) | −0.0160 (3) | 0.0282 (3) | 0.0173 (3) |
O1 | 0.0201 (19) | 0.062 (3) | 0.038 (2) | −0.0006 (18) | 0.0138 (17) | 0.007 (2) |
O2 | 0.027 (2) | 0.056 (3) | 0.042 (2) | −0.0059 (19) | 0.0109 (18) | 0.014 (2) |
N1 | 0.022 (2) | 0.055 (3) | 0.035 (3) | 0.001 (2) | 0.012 (2) | 0.011 (2) |
C1 | 0.022 (3) | 0.035 (3) | 0.029 (3) | 0.001 (2) | 0.013 (2) | −0.001 (2) |
C2 | 0.022 (3) | 0.049 (3) | 0.038 (3) | −0.002 (2) | 0.012 (2) | 0.003 (3) |
C11 | 0.030 (3) | 0.037 (3) | 0.041 (3) | 0.007 (2) | 0.018 (3) | 0.010 (2) |
C12 | 0.031 (3) | 0.035 (3) | 0.051 (4) | −0.002 (2) | 0.012 (3) | 0.005 (3) |
C13 | 0.039 (3) | 0.031 (3) | 0.063 (4) | −0.004 (3) | 0.024 (3) | 0.008 (3) |
C14 | 0.052 (4) | 0.032 (3) | 0.046 (4) | 0.001 (3) | 0.026 (3) | 0.000 (3) |
C15 | 0.050 (4) | 0.047 (4) | 0.035 (3) | −0.007 (3) | 0.014 (3) | −0.001 (3) |
C16 | 0.038 (3) | 0.054 (4) | 0.044 (4) | −0.010 (3) | 0.020 (3) | 0.000 (3) |
I1—C14 | 2.102 (6) | C11—C16 | 1.380 (9) |
O1—C1 | 1.236 (6) | C11—C12 | 1.392 (8) |
O2—C11 | 1.389 (7) | C12—C13 | 1.371 (9) |
O2—C2 | 1.415 (6) | C12—H12 | 0.9500 |
N1—C1 | 1.322 (7) | C13—C14 | 1.370 (10) |
N1—H71 | 0.8800 | C13—H13 | 0.9500 |
N1—H72 | 0.8800 | C14—C15 | 1.388 (9) |
C1—C2 | 1.503 (8) | C15—C16 | 1.372 (9) |
C2—H21 | 0.9900 | C15—H15 | 0.9500 |
C2—H22 | 0.9900 | C16—H16 | 0.9500 |
C11—O2—C2 | 116.2 (4) | C13—C12—C11 | 120.3 (6) |
C1—N1—H71 | 120.0 | C13—C12—H12 | 119.8 |
C1—N1—H72 | 120.0 | C11—C12—H12 | 119.8 |
H71—N1—H72 | 120.0 | C14—C13—C12 | 119.7 (6) |
O1—C1—N1 | 123.2 (5) | C14—C13—H13 | 120.1 |
O1—C1—C2 | 118.2 (5) | C12—C13—H13 | 120.1 |
N1—C1—C2 | 118.6 (5) | C13—C14—C15 | 120.5 (6) |
O2—C2—C1 | 110.9 (4) | C13—C14—I1 | 119.7 (5) |
O2—C2—H21 | 109.5 | C15—C14—I1 | 119.8 (5) |
C1—C2—H21 | 109.5 | C16—C15—C14 | 119.8 (6) |
O2—C2—H22 | 109.5 | C16—C15—H15 | 120.1 |
C1—C2—H22 | 109.5 | C14—C15—H15 | 120.1 |
H21—C2—H22 | 108.0 | C15—C16—C11 | 120.0 (6) |
C16—C11—O2 | 125.4 (5) | C15—C16—H16 | 120.0 |
C16—C11—C12 | 119.6 (6) | C11—C16—H16 | 120.0 |
O2—C11—C12 | 115.1 (5) | ||
C11—O2—C2—C1 | −175.7 (5) | C12—C13—C14—C15 | −0.1 (10) |
O1—C1—C2—O2 | 172.4 (5) | C12—C13—C14—I1 | 179.0 (5) |
N1—C1—C2—O2 | −8.5 (8) | C13—C14—C15—C16 | −1.1 (10) |
C2—O2—C11—C16 | −20.4 (9) | I1—C14—C15—C16 | 179.8 (5) |
C2—O2—C11—C12 | 159.1 (5) | C14—C15—C16—C11 | 0.5 (10) |
C16—C11—C12—C13 | −2.6 (9) | O2—C11—C16—C15 | −179.2 (6) |
O2—C11—C12—C13 | 177.9 (6) | C12—C11—C16—C15 | 1.3 (10) |
C11—C12—C13—C14 | 2.0 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H71···O1i | 0.88 | 2.00 | 2.881 (6) | 178 |
N1—H72···O1ii | 0.88 | 2.28 | 2.954 (6) | 133 |
C2—H21···O1iii | 0.99 | 2.48 | 3.422 (8) | 158 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x+1, y, z; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H8INO2 |
Mr | 277.05 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 5.1411 (4), 26.473 (2), 7.2960 (7) |
β (°) | 109.564 (3) |
V (Å3) | 935.66 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.38 |
Crystal size (mm) | 0.55 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.824, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8332, 2282, 2089 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.120, 1.29 |
No. of reflections | 2282 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.50, −1.58 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H71···O1i | 0.88 | 2.00 | 2.881 (6) | 178 |
N1—H72···O1ii | 0.88 | 2.28 | 2.954 (6) | 133 |
C2—H21···O1iii | 0.99 | 2.48 | 3.422 (8) | 158 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x+1, y, z; (iii) −x+1, −y, −z+1. |
Acknowledgements
The authors thank Mrs Vida Maqoko for helpful discussions.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Glover, S. A., Goosen, A. & Laue, H. A. H. (1973). J. S. Afr. Chem. Inst. 26, 77–81. CAS Google Scholar
Lakshmi Rao, Bh., Seshadri, T. P. & Rao, L. M. (1987). Acta Cryst. C43, 1924–1927. CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rao, B. L., Seshadri, T. P. & Rao, L. M. (1987). Z. Kristallogr. C180, 37–42. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Unlike carboxylic acids, their pertaining amides have not been studied extensively as ligands in coordination chemistry. Owing to their versatility in terms of denticity, keto-enol tautomerism as well as their possible use as neutral – or upon deprotonation – anionic ligands we set out to investigate the coordination behaviour of substituted acetamide derivatives to elucidate the rules guiding the formation of complex compounds. To enable comparative studies with envisioned reaction products, we determined the molecular and crystal structure of the title compound. So far, only the structures of 2-(4-nitrophenoxy)acetamide (Lakshmi Rao et al., 1987) and of 2-(4-chloro-2-methylphenoxy)acetamide (Rao et al., 1987) have been discussed as examples of phenoxy-substituted derivatives of acetamide.
The C–N single bond is shortened to 1.322 (7) Å due to the amide-typical resonance. This value is in good agreement with other derivatives of acetamide whose crystallographic data has been deposited with the Cambridge Structural Database (Allen, 2002) and whose ketonic oxygen atom is not involved in donor action towards transition metals. Intracyclic C–C–C angles hardly deviate from the ideal value of 120 °. The least-squares planes defined by the acetamide moiety and the oxygen atom of the phenoxy-derivative substituent on the one hand and the carbon atoms of the carbocycle on the other hand intersect at an angle of 24.91 (29) ° (Fig. 1 and Fig. 2).
In the crystal structure, both nitrogen-bonded H atoms participate in hydrogen bonds which invariably have the carbonyl oxygen atom as acceptor. While one of the H atoms of the amino group connects the molecules to centrosymmetric dimeric subunits, the other H atom of the NH2 group connects these dimers to chains along [1 0 0]. Additionally, one of the hydrogen atoms of the methylene group forms a C–H···O contact whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms. Again, the double-bonded O atom acts as acceptor. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the hydrogen bonds stemming from the amino group can be described by a C11(4)R22(8) descriptor on the unitary level while the C–H···O contacts necessitate a R22(4) descriptor on the same level. In total, the molecules are connected to double layers approximately perpendicular to the crystallographic b-axis (Fig. 3). No π-stacking is apparent in the crystal structure.
The packing of the compound is shown in Figure 4.