organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Iodo­phen­­oxy)acetamide

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 21 June 2011; accepted 30 June 2011; online 6 July 2011)

The mol­ecule of the title compound, C8H8INO2, amide-typical resonance shortens the nominal C—N single bond to 1.322 (7) Å. In the crystal, hydrogen bonds involving both nitro­gen-bound H atoms as well as C—H⋯O contacts connect the mol­ecules into double layers approximately perpendicular to the crystallographic b axis. No π-stacking is apparent in the crystal structure.

Related literature

For the crystal structure of 2-(4-nitro­phen­oxy)acetamide, see: Lakshmi Rao et al. (1987[Lakshmi Rao, Bh., Seshadri, T. P. & Rao, L. M. (1987). Acta Cryst. C43, 1924-1927.]) and of 2-(4-chloro-2-methyl­phen­oxy)acetamide, see: Rao et al. (1987[Rao, B. L., Seshadri, T. P. & Rao, L. M. (1987). Z. Kristallogr. C180, 37-42.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the preparation, see: Glover et al. (1973[Glover, S. A., Goosen, A. & Laue, H. A. H. (1973). J. S. Afr. Chem. Inst. 26, 77-81.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8INO2

  • Mr = 277.05

  • Monoclinic, P 21 /c

  • a = 5.1411 (4) Å

  • b = 26.473 (2) Å

  • c = 7.2960 (7) Å

  • β = 109.564 (3)°

  • V = 935.66 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.38 mm−1

  • T = 200 K

  • 0.55 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.824, Tmax = 1.000

  • 8332 measured reflections

  • 2282 independent reflections

  • 2089 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.120

  • S = 1.29

  • 2282 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯O1i 0.88 2.00 2.881 (6) 178
N1—H72⋯O1ii 0.88 2.28 2.954 (6) 133
C2—H21⋯O1iii 0.99 2.48 3.422 (8) 158
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x+1, y, z; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Unlike carboxylic acids, their pertaining amides have not been studied extensively as ligands in coordination chemistry. Owing to their versatility in terms of denticity, keto-enol tautomerism as well as their possible use as neutral – or upon deprotonation – anionic ligands we set out to investigate the coordination behaviour of substituted acetamide derivatives to elucidate the rules guiding the formation of complex compounds. To enable comparative studies with envisioned reaction products, we determined the molecular and crystal structure of the title compound. So far, only the structures of 2-(4-nitrophenoxy)acetamide (Lakshmi Rao et al., 1987) and of 2-(4-chloro-2-methylphenoxy)acetamide (Rao et al., 1987) have been discussed as examples of phenoxy-substituted derivatives of acetamide.

The C–N single bond is shortened to 1.322 (7) Å due to the amide-typical resonance. This value is in good agreement with other derivatives of acetamide whose crystallographic data has been deposited with the Cambridge Structural Database (Allen, 2002) and whose ketonic oxygen atom is not involved in donor action towards transition metals. Intracyclic C–C–C angles hardly deviate from the ideal value of 120 °. The least-squares planes defined by the acetamide moiety and the oxygen atom of the phenoxy-derivative substituent on the one hand and the carbon atoms of the carbocycle on the other hand intersect at an angle of 24.91 (29) ° (Fig. 1 and Fig. 2).

In the crystal structure, both nitrogen-bonded H atoms participate in hydrogen bonds which invariably have the carbonyl oxygen atom as acceptor. While one of the H atoms of the amino group connects the molecules to centrosymmetric dimeric subunits, the other H atom of the NH2 group connects these dimers to chains along [1 0 0]. Additionally, one of the hydrogen atoms of the methylene group forms a C–H···O contact whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms. Again, the double-bonded O atom acts as acceptor. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the hydrogen bonds stemming from the amino group can be described by a C11(4)R22(8) descriptor on the unitary level while the C–H···O contacts necessitate a R22(4) descriptor on the same level. In total, the molecules are connected to double layers approximately perpendicular to the crystallographic b-axis (Fig. 3). No π-stacking is apparent in the crystal structure.

The packing of the compound is shown in Figure 4.

Related literature top

For the crystal structure of 2-(4-nitrophenoxy)acetamide, see: Lakshmi Rao et al. (1987) and of 2-(4-chloro-2-methylphenoxy)acetamide, see: Rao et al. (1987). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). For the preparation, see: Glover et al. (1973).

Experimental top

The compound was prepared upon reacting 2-phenoxyacetamide with tert-butyl hypochlorite and iodine according to a published procedure (Glover et al., 1973).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 Å for the methylene group and C—H 0.95 Å for aromatic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). Nitrogen-bound H-atoms were placed in calculated positions (N—H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Observed distribution of C–N bond lengths in the O=C—NH2 moiety of acetamide derivatives in which the O atom is not acting as a donor atom in coordination compounds (data based on CSD search including all deposited crystal structures up to November 2010).
[Figure 3] Fig. 3. Intermolecular contacts, viewed along [0 0 - 1]. Symmetry operators: i x - 1, y, z; ii -x + 1, -y, -z + 1; iii -x + 2, -y, -z + 2; iv x + 1, y, z.
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-(4-Iodophenoxy)acetamide top
Crystal data top
C8H8INO2F(000) = 528
Mr = 277.05Dx = 1.967 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5293 reflections
a = 5.1411 (4) Åθ = 3.1–28.2°
b = 26.473 (2) ŵ = 3.38 mm1
c = 7.2960 (7) ÅT = 200 K
β = 109.564 (3)°Rod, colourless
V = 935.66 (14) Å30.55 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2282 independent reflections
Radiation source: fine-focus sealed tube2089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.824, Tmax = 1.000k = 3435
8332 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0042P)2 + 6.0795P]
where P = (Fo2 + 2Fc2)/3
2282 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 1.58 e Å3
Crystal data top
C8H8INO2V = 935.66 (14) Å3
Mr = 277.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1411 (4) ŵ = 3.38 mm1
b = 26.473 (2) ÅT = 200 K
c = 7.2960 (7) Å0.55 × 0.18 × 0.10 mm
β = 109.564 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2282 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2089 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 1.000Rint = 0.020
8332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.29Δρmax = 1.50 e Å3
2282 reflectionsΔρmin = 1.58 e Å3
109 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.81735 (14)0.20849 (2)0.25506 (9)0.0685 (2)
O10.6872 (8)0.01765 (17)0.7947 (6)0.0390 (10)
O21.0024 (8)0.08086 (17)0.4969 (6)0.0416 (10)
N11.1340 (9)0.0300 (2)0.8286 (7)0.0367 (11)
H711.19170.01520.94320.044*
H721.25430.04220.77810.044*
C10.8667 (10)0.0339 (2)0.7322 (8)0.0278 (11)
C20.7756 (11)0.0587 (2)0.5354 (9)0.0359 (13)
H210.68830.03320.43430.043*
H220.63650.08500.53020.043*
C110.9411 (12)0.1079 (2)0.3245 (9)0.0345 (12)
C121.1409 (13)0.1428 (2)0.3187 (10)0.0399 (14)
H121.30130.14740.42960.048*
C131.1073 (13)0.1706 (2)0.1538 (11)0.0425 (15)
H131.24660.19360.14890.051*
C140.8721 (14)0.1650 (2)0.0038 (10)0.0408 (14)
C150.6678 (15)0.1314 (3)0.0021 (10)0.0440 (15)
H150.50360.12810.10690.053*
C160.7036 (13)0.1029 (3)0.1658 (10)0.0435 (15)
H160.56470.07970.16990.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0910 (5)0.0588 (3)0.0581 (3)0.0160 (3)0.0282 (3)0.0173 (3)
O10.0201 (19)0.062 (3)0.038 (2)0.0006 (18)0.0138 (17)0.007 (2)
O20.027 (2)0.056 (3)0.042 (2)0.0059 (19)0.0109 (18)0.014 (2)
N10.022 (2)0.055 (3)0.035 (3)0.001 (2)0.012 (2)0.011 (2)
C10.022 (3)0.035 (3)0.029 (3)0.001 (2)0.013 (2)0.001 (2)
C20.022 (3)0.049 (3)0.038 (3)0.002 (2)0.012 (2)0.003 (3)
C110.030 (3)0.037 (3)0.041 (3)0.007 (2)0.018 (3)0.010 (2)
C120.031 (3)0.035 (3)0.051 (4)0.002 (2)0.012 (3)0.005 (3)
C130.039 (3)0.031 (3)0.063 (4)0.004 (3)0.024 (3)0.008 (3)
C140.052 (4)0.032 (3)0.046 (4)0.001 (3)0.026 (3)0.000 (3)
C150.050 (4)0.047 (4)0.035 (3)0.007 (3)0.014 (3)0.001 (3)
C160.038 (3)0.054 (4)0.044 (4)0.010 (3)0.020 (3)0.000 (3)
Geometric parameters (Å, º) top
I1—C142.102 (6)C11—C161.380 (9)
O1—C11.236 (6)C11—C121.392 (8)
O2—C111.389 (7)C12—C131.371 (9)
O2—C21.415 (6)C12—H120.9500
N1—C11.322 (7)C13—C141.370 (10)
N1—H710.8800C13—H130.9500
N1—H720.8800C14—C151.388 (9)
C1—C21.503 (8)C15—C161.372 (9)
C2—H210.9900C15—H150.9500
C2—H220.9900C16—H160.9500
C11—O2—C2116.2 (4)C13—C12—C11120.3 (6)
C1—N1—H71120.0C13—C12—H12119.8
C1—N1—H72120.0C11—C12—H12119.8
H71—N1—H72120.0C14—C13—C12119.7 (6)
O1—C1—N1123.2 (5)C14—C13—H13120.1
O1—C1—C2118.2 (5)C12—C13—H13120.1
N1—C1—C2118.6 (5)C13—C14—C15120.5 (6)
O2—C2—C1110.9 (4)C13—C14—I1119.7 (5)
O2—C2—H21109.5C15—C14—I1119.8 (5)
C1—C2—H21109.5C16—C15—C14119.8 (6)
O2—C2—H22109.5C16—C15—H15120.1
C1—C2—H22109.5C14—C15—H15120.1
H21—C2—H22108.0C15—C16—C11120.0 (6)
C16—C11—O2125.4 (5)C15—C16—H16120.0
C16—C11—C12119.6 (6)C11—C16—H16120.0
O2—C11—C12115.1 (5)
C11—O2—C2—C1175.7 (5)C12—C13—C14—C150.1 (10)
O1—C1—C2—O2172.4 (5)C12—C13—C14—I1179.0 (5)
N1—C1—C2—O28.5 (8)C13—C14—C15—C161.1 (10)
C2—O2—C11—C1620.4 (9)I1—C14—C15—C16179.8 (5)
C2—O2—C11—C12159.1 (5)C14—C15—C16—C110.5 (10)
C16—C11—C12—C132.6 (9)O2—C11—C16—C15179.2 (6)
O2—C11—C12—C13177.9 (6)C12—C11—C16—C151.3 (10)
C11—C12—C13—C142.0 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O1i0.882.002.881 (6)178
N1—H72···O1ii0.882.282.954 (6)133
C2—H21···O1iii0.992.483.422 (8)158
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H8INO2
Mr277.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.1411 (4), 26.473 (2), 7.2960 (7)
β (°) 109.564 (3)
V3)935.66 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.38
Crystal size (mm)0.55 × 0.18 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.824, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8332, 2282, 2089
Rint0.020
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.120, 1.29
No. of reflections2282
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 1.58

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O1i0.882.002.881 (6)178
N1—H72···O1ii0.882.282.954 (6)133
C2—H21···O1iii0.992.483.422 (8)158
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank Mrs Vida Maqoko for helpful discussions.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGlover, S. A., Goosen, A. & Laue, H. A. H. (1973). J. S. Afr. Chem. Inst. 26, 77–81.  CAS Google Scholar
First citationLakshmi Rao, Bh., Seshadri, T. P. & Rao, L. M. (1987). Acta Cryst. C43, 1924–1927.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRao, B. L., Seshadri, T. P. & Rao, L. M. (1987). Z. Kristallogr. C180, 37–42.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds