organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(8aRS)-8,8a-Di­hydro­furo[3,2-f]indolizine-6,9(4H,7H)-dione

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, bInstitute of Natural Sciences, Faculty of Mechanical Engineering, Slovak University of Technologyy, Námestie slobody 17, SK-812 31 Bratislava, Slovak Republic 81231, and cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237
*Correspondence e-mail: lubomir.svorc@stuba.sk

(Received 30 May 2011; accepted 7 July 2011; online 13 July 2011)

The title compound, C10H9NO3, is a chiral mol­ecule with one stereogenic carbon atom, but which crystallizes as a racemate in the centrosymmetric space group P21/n. The central six-membered ring of the indolizine moiety adopts a definite envelope conformation, while the conformation of the oxopyrrolidine ring is close to that of a flat-envelope with a maximum deviation of 0.352 (1) Å for the flap atom.

Related literature

For properties of indolizine derivatives, see: Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-243.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Sonnet et al. (2000[Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945-955.]); Campagna et al. (1990[Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97-107.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]). For their role as synthetic targets for pharmaceuticals, see: Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Ruprecht et al. (1989[Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149-157.]). For the synthesis of the title compound, see: Szemes et al. (1998[Szemes, F., Marchalín, Š., Bar, N. & Decroix, B. (1998). J. Heterocycl. Chem. 35, 1371-1375.]). For metric comparison with related compounds, see: Pedersen (1967[Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO3

  • Mr = 191.18

  • Monoclinic, P 21 /n

  • a = 7.63534 (19) Å

  • b = 11.7583 (2) Å

  • c = 9.9234 (3) Å

  • β = 105.775 (3)°

  • V = 857.35 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.49 × 0.23 × 0.13 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.952, Tmax = 0.992

  • 14552 measured reflections

  • 2213 independent reflections

  • 1646 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.03

  • 2213 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), aromatase inhibitory (Sonnet et al., 2000), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992) and HIV infections (Ruprecht et al., 1989).

Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound, (I). The molecular structure and the atom labeling scheme are shown in Fig. 1.

The molecule crystallizes in the monoclinic space group P21/n. Accordingly, the compound is a racemate and consists of two enantiomeric pairs in the unit cell with relative configuration R and S on the C5 carbon atom. The central N-heterocyclic ring is not planar and adopts an envelope conformation for both enantiomers. A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms C5, C6, C7, C10 and C11 are coplanar, while atom N1 is displaced from this plane with an out-of-plane displacement of 0.479 (2) Å.

The oxopyrrolidine ring attached to the indolizine ring system has a flat-envelope conformation, with atom C4 on the flap. The maximum deviation from planarity for C4 is 0.352 (1) Å. Obviously, the change of stereochemical centre on C5 from R to S causes changes in orientation of N1, C2, O1, C3 and C4.

The N1—C5 and N1—C11 bonds are approximately equivalent and both are much longer than the N1—C2 bond. Moreover, the N1 atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [358.8 (3)° ]. These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl and agree with literature values for simple amides (Pedersen, 1967).

Related literature top

For properties of indolizine derivatives, see: Malonne et al. (1998); Medda et al. (2003); Sonnet et al. (2000); Campagna et al. (1990); Pearson & Guo (2001); Gupta et al. (2003); Teklu et al. (2005). For their role as synthetic targets for pharmaceuticals, see: Gubin et al. (1992); Ruprecht et al. (1989). For the synthesis of the title compound, see: Szemes et al. (1998). For metric comparison with related compounds, see: Pedersen (1967).

Experimental top

The title compound rac-(8a)-8,8a-dihydrofuro[3,2-f]indolizine-6,9 (4H,7H)-dione was prepared according to a standard protocol described in literature (Szemes et al., 1998).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and O—H distance 0.85Å and Uiso set at 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme; the chiral centre is C5. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
[Figure 2] Fig. 2. Packing diagram.
(8aRS)-8,8a-Dihydrofuro[3,2-f]indolizine- 6,9(4H,7H)-dione top
Crystal data top
C10H9NO3F(000) = 400
Mr = 191.18Dx = 1.481 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7934 reflections
a = 7.63534 (19) Åθ = 3.5–29.3°
b = 11.7583 (2) ŵ = 0.11 mm1
c = 9.9234 (3) ÅT = 298 K
β = 105.775 (3)°Block, yellow
V = 857.35 (4) Å30.49 × 0.23 × 0.13 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2213 independent reflections
Radiation source: fine-focus sealed tube1646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.4340 pixels mm-1θmax = 29.4°, θmin = 3.5°
Rotation method data acquisition using ω and ϕ scansh = 1010
Absorption correction: analytical
(Clark & Reid, 1995)
k = 1514
Tmin = 0.952, Tmax = 0.992l = 1313
14552 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.063P)2 + 0.130P]
where P = (Fo2 + 2Fc2)/3
2213 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H9NO3V = 857.35 (4) Å3
Mr = 191.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.63534 (19) ŵ = 0.11 mm1
b = 11.7583 (2) ÅT = 298 K
c = 9.9234 (3) Å0.49 × 0.23 × 0.13 mm
β = 105.775 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2213 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1646 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.992Rint = 0.018
14552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2213 reflectionsΔρmin = 0.16 e Å3
127 parameters
Special details top

Experimental. face-indexed (Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C21.15109 (18)0.99636 (12)0.67889 (14)0.0438 (3)
C31.3182 (2)1.01426 (13)0.62848 (17)0.0543 (4)
H3B1.42371.02850.70680.065*
H3A1.30151.07830.56470.065*
C41.3418 (2)0.90534 (14)0.55443 (18)0.0584 (4)
H4B1.46920.88430.57560.070*
H4A1.29380.91340.45380.070*
C51.23351 (17)0.81624 (11)0.61138 (14)0.0439 (3)
H5A1.31590.77670.69060.053*
C61.13528 (19)0.72915 (11)0.50495 (14)0.0456 (3)
C70.96776 (18)0.69128 (11)0.53212 (13)0.0429 (3)
C80.7398 (2)0.58131 (13)0.53142 (16)0.0539 (4)
H8A0.65570.52230.50950.065*
C90.74188 (18)0.66085 (12)0.62999 (14)0.0475 (3)
H9A0.66230.66710.68580.057*
C100.89106 (17)0.73291 (11)0.63038 (13)0.0408 (3)
C110.96560 (19)0.83359 (13)0.71747 (14)0.0483 (3)
H11B0.86920.88800.71460.058*
H11A1.01720.81060.81400.058*
N11.10563 (14)0.88532 (10)0.66294 (11)0.0425 (3)
O11.07083 (16)1.06761 (9)0.72905 (13)0.0636 (3)
O21.19841 (17)0.69185 (9)0.41368 (12)0.0654 (3)
O30.87461 (14)0.59746 (9)0.46802 (10)0.0535 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0435 (6)0.0436 (7)0.0472 (7)0.0004 (5)0.0176 (5)0.0013 (5)
C30.0515 (8)0.0506 (8)0.0679 (9)0.0066 (6)0.0282 (7)0.0042 (7)
C40.0544 (8)0.0586 (9)0.0760 (10)0.0066 (7)0.0412 (8)0.0008 (7)
C50.0412 (6)0.0457 (7)0.0519 (7)0.0039 (5)0.0249 (6)0.0033 (6)
C60.0541 (7)0.0405 (7)0.0511 (7)0.0077 (6)0.0294 (6)0.0049 (5)
C70.0476 (7)0.0408 (7)0.0437 (7)0.0003 (5)0.0180 (6)0.0004 (5)
C80.0480 (8)0.0501 (8)0.0624 (9)0.0075 (6)0.0131 (7)0.0025 (7)
C90.0428 (7)0.0526 (8)0.0495 (7)0.0036 (6)0.0169 (6)0.0068 (6)
C100.0419 (6)0.0441 (7)0.0392 (6)0.0003 (5)0.0161 (5)0.0044 (5)
C110.0504 (7)0.0550 (8)0.0492 (7)0.0092 (6)0.0301 (6)0.0073 (6)
N10.0428 (6)0.0440 (6)0.0487 (6)0.0026 (5)0.0263 (5)0.0035 (5)
O10.0681 (7)0.0486 (6)0.0852 (8)0.0021 (5)0.0396 (6)0.0122 (5)
O20.0849 (8)0.0569 (6)0.0742 (7)0.0039 (6)0.0552 (7)0.0080 (5)
O30.0584 (6)0.0480 (6)0.0559 (6)0.0029 (4)0.0188 (5)0.0085 (4)
Geometric parameters (Å, º) top
C2—O11.2211 (16)C6—C71.4472 (18)
C2—N11.3492 (18)C7—C101.3578 (17)
C2—C31.5062 (18)C7—O31.3717 (16)
C3—C41.512 (2)C8—C91.350 (2)
C3—H3B0.9700C8—O31.3579 (18)
C3—H3A0.9700C8—H8A0.9300
C4—C51.5345 (19)C9—C101.4188 (18)
C4—H4B0.9700C9—H9A0.9300
C4—H4A0.9700C10—C111.4848 (19)
C5—N11.4651 (15)C11—N11.4562 (15)
C5—C61.515 (2)C11—H11B0.9700
C5—H5A0.9800C11—H11A0.9700
C6—O21.2176 (16)
O1—C2—N1124.75 (12)C7—C6—C5111.91 (10)
O1—C2—C3127.14 (13)C10—C7—O3110.64 (11)
N1—C2—C3108.08 (11)C10—C7—C6126.76 (13)
C2—C3—C4105.48 (12)O3—C7—C6122.29 (11)
C2—C3—H3B110.6C9—C8—O3112.18 (12)
C4—C3—H3B110.6C9—C8—H8A123.9
C2—C3—H3A110.6O3—C8—H8A123.9
C4—C3—H3A110.6C8—C9—C10105.49 (12)
H3B—C3—H3A108.8C8—C9—H9A127.3
C3—C4—C5104.60 (11)C10—C9—H9A127.3
C3—C4—H4B110.8C7—C10—C9106.58 (12)
C5—C4—H4B110.8C7—C10—C11122.24 (11)
C3—C4—H4A110.8C9—C10—C11131.16 (11)
C5—C4—H4A110.8N1—C11—C10108.71 (10)
H4B—C4—H4A108.9N1—C11—H11B109.9
N1—C5—C6111.56 (10)C10—C11—H11B109.9
N1—C5—C4103.12 (11)N1—C11—H11A109.9
C6—C5—C4114.77 (12)C10—C11—H11A109.9
N1—C5—H5A109.1H11B—C11—H11A108.3
C6—C5—H5A109.1C2—N1—C11123.51 (10)
C4—C5—H5A109.1C2—N1—C5113.76 (10)
O2—C6—C7125.20 (14)C11—N1—C5121.64 (11)
O2—C6—C5122.74 (13)C8—O3—C7105.10 (10)
O1—C2—C3—C4170.54 (15)C8—C9—C10—C70.07 (15)
N1—C2—C3—C411.15 (17)C8—C9—C10—C11178.40 (15)
C2—C3—C4—C520.30 (17)C7—C10—C11—N19.17 (19)
C3—C4—C5—N121.70 (16)C9—C10—C11—N1172.72 (13)
C3—C4—C5—C6143.24 (13)O1—C2—N1—C116.8 (2)
N1—C5—C6—O2152.99 (13)C3—C2—N1—C11171.60 (12)
C4—C5—C6—O236.17 (19)O1—C2—N1—C5174.95 (14)
N1—C5—C6—C731.17 (16)C3—C2—N1—C53.41 (16)
C4—C5—C6—C7147.98 (12)C10—C11—N1—C2153.77 (12)
O2—C6—C7—C10178.15 (14)C10—C11—N1—C538.95 (17)
C5—C6—C7—C106.1 (2)C6—C5—N1—C2139.84 (12)
O2—C6—C7—O39.0 (2)C4—C5—N1—C216.15 (16)
C5—C6—C7—O3166.75 (11)C6—C5—N1—C1151.73 (16)
O3—C8—C9—C100.56 (16)C4—C5—N1—C11175.42 (12)
O3—C7—C10—C90.67 (15)C9—C8—O3—C70.96 (16)
C6—C7—C10—C9172.91 (13)C10—C7—O3—C80.99 (15)
O3—C7—C10—C11179.19 (12)C6—C7—O3—C8172.92 (13)
C6—C7—C10—C115.6 (2)

Experimental details

Crystal data
Chemical formulaC10H9NO3
Mr191.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.63534 (19), 11.7583 (2), 9.9234 (3)
β (°) 105.775 (3)
V3)857.35 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.23 × 0.13
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.952, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14552, 2213, 1646
Rint0.018
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.03
No. of reflections2213
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).

 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0429/11, 1/0679/11) and the Slovak Research and Development Agency under contract No. APVV-0204–10 for financial support for this research program.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCampagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243.  CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationPedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424.  CrossRef CAS Web of Science Google Scholar
First citationRuprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSzemes, F., Marchalín, Š., Bar, N. & Decroix, B. (1998). J. Heterocycl. Chem. 35, 1371–1375.  CrossRef CAS Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds