organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2195-o2196

3-Hy­dr­oxy-4-(3-hy­dr­oxy­phen­yl)-2-quinolone monohydrate

aSchool of Basic Science, Guangzhou Medical College, Guangzhou 510182, People's Republic of China, and bGuangdong Institute for Drug Control, Guangzhou 510180, People's Republic of China
*Correspondence e-mail: yywentao@yahoo.com.cn

(Received 7 June 2011; accepted 21 July 2011; online 30 July 2011)

In the title compound, also known as viridicatol monohydrate, C15H11NO3·H2O, the dihedral angle between the benzene ring and quinoline ring system is 64.76 (5)°. An intra­molecular O—H⋯O hydrogen bond occurs. The crystal structure is stabilized by classical inter­molecular N—H⋯O and O—H⋯O hydrogen bonds and weak ππ inter­actions with a centroid–centroid distance of 3.8158 (10) Å.

Related literature

For 3-hy­droxy-2(1H)-pyridinone, see: Deflon et al. (2000[Deflon, V. M., Bessler, K., Kretschmar, M. & Abram, U. (2000). Z. Anorg. Allg. Chem. 626, 1545-1549.]) and for 3-hy­droxy-2-oxo-1,2-dihydro­quinoline, see: Strashnova et al. (2008[Strashnova, S. B., Koval'chukova, O. V., Zaitsev, B. E. & Stash, A. I. (2008). Koord. Khim. 34, 783-787.]). For the isolation of viridicatol, see: Yurchenko et al. (2010[Yurchenko, A. N., Smetanina, O. F., Kalinovsky, A. I., Pivkin, M. V., Dmitrenok, P. S. & Kuznetsova, T. A. (2010). Russ. Chem. Bull. 59, 852-856.]); Fremlin et al. (2009[Fremlin, L. J., Piggott, A. M., Lacey, E. & Capon, R. (2009). J. Nat. Prod., 72, 666-670.]); Proksch et al. (2008[Proksch, P., Ebel, R., Edrada, R., Riebe, F., Liu, H. B., Diesel, A., Bayer, M., Li, X., Lin, W. H., Grebenyuk, V., Mueller, W. E. G., Draeger, S. & Zuccaro, A. (2008). Botanica Marina, 51, 209-218.]); Lund & Frisvad (1994[Lund, F. & Frisvad, J. C. (1994). Mycol. Res. 98, 481-492.]); Birkinshaw et al. (1963[Birkinshaw, J. H., Luckner, M., Mohammed, Y. S., Mothes, K. & Stickings, C. E. (1963). Biochem. J. 89, 196-202.]); Kozlovskii et al. (2002[Kozlovskii, A. G., Zhelifonova, V. P., Antipova, V. M., Shnyreva, A. V. & Viktorov, A. N. (2002). Microbiology, 71, 6666-6669.]). For the synthesis of viridicatol, see: Kobayashi & Harayama (2009[Kobayashi, Y. & Harayama, T. (2009). Org. Lett. 11, 1603-1606.]). For examples of viridicatol derivatives, see: Bracken et al. (1954[Bracken, A., Pocker, A. & Raistrick, H. (1954). Biochem. J. 57, 587-595.]). For the biological activity of viridicatol, see: Lin et al. (2008[Lin, J., Ke, A. B., Zhang, X. L., Zheng, Z. H., Zhu, J. T., Lu, X. H., Li, Y. Y., Gui, X. L., Shi, Y., Zhang, H. & He, J. G. (2008). Zhongguo Kangshengsu Zazhi, 33, 463-466.]); Proksch et al. (2008[Proksch, P., Ebel, R., Edrada, R., Riebe, F., Liu, H. B., Diesel, A., Bayer, M., Li, X., Lin, W. H., Grebenyuk, V., Mueller, W. E. G., Draeger, S. & Zuccaro, A. (2008). Botanica Marina, 51, 209-218.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO3·H2O

  • Mr = 271.26

  • Triclinic, [P \overline 1]

  • a = 6.9845 (5) Å

  • b = 10.0632 (7) Å

  • c = 10.3361 (6) Å

  • α = 109.204 (6)°

  • β = 103.251 (5)°

  • γ = 101.015 (6)°

  • V = 639.12 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.958

  • 5057 measured reflections

  • 2225 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.132

  • S = 1.10

  • 2225 reflections

  • 184 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.11 2.9577 (16) 169
O1—H1⋯O1W 0.82 1.92 2.689 (2) 155
O2—H2A⋯O3ii 0.82 1.99 2.6500 (16) 138
O2—H2A⋯O3 0.82 2.28 2.7242 (14) 115
O1W—H1B⋯O1Wiii 0.86 2.37 2.816 (3) 113
O1W—H1C⋯O2iv 0.86 2.04 2.8476 (18) 157
Symmetry codes: (i) x, y, z-1; (ii) -x+3, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

3-hydroxy-4-(3-hydroxyphenyl)-2-quinolone, also known as viridicatol, C15H13NO4 (I), was first isolated from Penicillium viridicatum Westling (Birkinshaw et al., 1963). It has been proven that viridicatol can completely inhibit the spleen lymphocytes proliferation (Lin et al., 2008) and suppress larval growth of the polyphagous pest insect Spodoptera littoralis (Proksch et al., 2008). Viridicatol can be isolated from Penicillium aurantiogriseum sensu lato (Lund et al., 1994), Penicillium chrysogenum strains (Kozlovskii et al., 2002), Penicillium sp from specimens of suberites domuncula (Proksch et al., 2008), an Australian marine-derived isolate of Aspergillus versicolor (Fremlin et al., 2009), and the marine fungus Aspergillus versicolor (Yurchenko et al., 2010). A similar compound, viridicatin, could be isolated from Penicillium cyclopium Westling (Bracken et al., 1954). Viridicatol also can be synthesized by one-pot method from cyanoacetanilides through Knoevenagel condensation followed by decyanative epoxide-arene cyclization (Kobayashi et al., 2009), but so far the crystal structure of viridicatol has not been reported.

The title compound can be considered as containing embedded 3-hydroxy-2(1H)-pyridinone, or 3-hydroxy-2-oxo-1,2-dihydroquinoline, motifs (Fig. 1). The crystal structures of both groups have already been reported (Deflon et al., 2000 and Strashnova et al., 2008) and their structural parameters are similar to those in I.

The 3-hydroxylbenzyl ring subtends a torsion angle of 64.76 (5)° to the quinoline to reduce the steric effect. The structure contains a water molecule which is involved in three out of the six hydrogen bonds formed (Table 1). The whole structure is a 3-D hydrogen-bonding architecture, futther stabilized by the weak π-π interaction between two pyridinone rings with a Cg1···Cg1 (2 - x,1 - y,1 - z) separation of 3.8158 (10) Å and the dihedral angle is zero (where Cg1 is the centroid of the N1/C7—C10/C15). Both weak interactions of hydrogen bonds and π-π effect consolidate the stability of the structure.

Related literature top

For 3-hydroxy-2(1H)-pyridinone, see: Deflon et al. (2000) and for 3-hydroxy-2-oxo-1,2-dihydroquinoline, see: Strashnova et al. (2008). For the isolation of viridicatol, see: Yurchenko et al. (2010); Fremlin et al. (2009); Proksch et al. (2008); Lund & Frisvad (1994); Birkinshaw et al. (1963); Kozlovskii et al. (2002). For the synthesis of viridicatol, see: Kobayashi & Harayama (2009). For examples of viridicatol derivatives, see: Bracken et al. (1954). For the biological activity of viridicatol, see: Lin et al. (2008); Proksch et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The fungus phomposis sp was isolated from the mangrove tree, Zhanjiang, and was stored at the Department of Applied Chemistry, Zhongshan University, Guangzhou, China. Starter cultures (from Professor Shining Zhou) were maintained on cornmeal seawater agar. Plugs of agar supporting mycelium growth were cut from solid culture medium and transferred aseptically to a 250 ml Erlenmeyer flask containing 100 ml liquid medium. The fungus was incubated at 28 °C and placed thirty days. The culture was filtered through cheesecloth. The mycelium was air-dried and then extracted in methanol. The CH3OH extract of the fungal mycelium was chromatographed on silica gel by using a gradient from petroleum to ethyl acetate, then from acetate to methanol, and obtained viridicatol eluted with 50% ethyl acetate-petroleum ether. Colorless block crystals were grown from a solution in methanol at room temperature over several days.

Refinement top

H atoms bonded to C atoms were positioned geometrically and treated as riding, with C—H distances of 0.93 Å and Uiso(H)=1.2Ueq(C). H atoms involved in hydrogen-bonding interactions (water, pyridinone, and hydroxy) were located from difference Fourier maps, idealized and refined with a riding scheme.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. The hydrogen bonds are shown as dashed lines.
3-hydroxy-4-(3-hydroxyphenyl)-1H-quinolin-2-one monohydrate top
Crystal data top
C15H11NO3·H2OZ = 2
Mr = 271.26F(000) = 284
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.9845 (5) ÅCell parameters from 5194 reflections
b = 10.0632 (7) Åθ = 4.8–69.4°
c = 10.3361 (6) ŵ = 0.86 mm1
α = 109.204 (6)°T = 298 K
β = 103.251 (5)°Block, colorless
γ = 101.015 (6)°0.30 × 0.20 × 0.05 mm
V = 639.12 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2225 independent reflections
Radiation source: fine-focus sealed tube1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 66.0°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.783, Tmax = 0.958k = 1111
5057 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.123P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2225 reflectionsΔρmax = 0.22 e Å3
184 parametersΔρmin = 0.27 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (3)
Crystal data top
C15H11NO3·H2Oγ = 101.015 (6)°
Mr = 271.26V = 639.12 (9) Å3
Triclinic, P1Z = 2
a = 6.9845 (5) ÅCu Kα radiation
b = 10.0632 (7) ŵ = 0.86 mm1
c = 10.3361 (6) ÅT = 298 K
α = 109.204 (6)°0.30 × 0.20 × 0.05 mm
β = 103.251 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2225 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1958 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.958Rint = 0.018
5057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
2225 reflectionsΔρmin = 0.27 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0143 (2)0.24292 (15)0.66031 (14)0.0370 (4)
C20.9196 (2)0.30457 (16)0.75933 (15)0.0385 (4)
H20.83710.36300.74130.046*
C30.9479 (2)0.27913 (17)0.88547 (15)0.0428 (4)
C41.0709 (3)0.19305 (19)0.91275 (17)0.0516 (4)
H41.09060.17660.99760.062*
C51.1646 (3)0.1315 (2)0.81423 (18)0.0542 (4)
H51.24710.07320.83280.065*
C61.1371 (3)0.15549 (18)0.68768 (17)0.0474 (4)
H61.20040.11330.62130.057*
C70.9865 (2)0.27142 (15)0.52515 (14)0.0359 (4)
C81.1501 (2)0.34609 (16)0.50295 (15)0.0402 (4)
C91.1342 (2)0.37555 (17)0.37236 (16)0.0401 (4)
C100.7706 (2)0.24388 (16)0.28851 (15)0.0386 (4)
C110.5843 (3)0.18891 (19)0.17754 (17)0.0504 (4)
H110.57500.20660.09380.061*
C120.4149 (3)0.1087 (2)0.19222 (19)0.0565 (5)
H120.29130.06990.11710.068*
C130.4255 (3)0.0846 (2)0.31846 (19)0.0533 (4)
H130.30880.03210.32850.064*
C140.6089 (2)0.13873 (17)0.42801 (17)0.0439 (4)
H140.61500.12200.51190.053*
C150.7871 (2)0.21856 (15)0.41627 (14)0.0361 (4)
N10.94503 (19)0.32206 (14)0.27371 (13)0.0416 (3)
H1A0.93170.33770.19560.050*
O10.8573 (2)0.33744 (15)0.98597 (12)0.0589 (4)
H10.80830.39930.96730.088*
O21.33807 (17)0.39862 (15)0.60257 (12)0.0576 (4)
H2A1.41950.44380.57490.086*
O31.28439 (17)0.44529 (14)0.35328 (12)0.0537 (4)
O1W0.5902 (2)0.4697 (2)0.88892 (15)0.0819 (5)
H1B0.48750.41430.89810.098*
H1C0.54560.46290.80140.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (7)0.0408 (7)0.0291 (7)0.0062 (6)0.0054 (6)0.0162 (6)
C20.0447 (8)0.0449 (8)0.0297 (7)0.0136 (6)0.0100 (6)0.0201 (6)
C30.0505 (8)0.0485 (8)0.0297 (7)0.0105 (7)0.0108 (6)0.0189 (6)
C40.0659 (10)0.0592 (10)0.0345 (8)0.0197 (8)0.0084 (7)0.0283 (7)
C50.0641 (10)0.0588 (10)0.0450 (9)0.0281 (8)0.0084 (8)0.0273 (8)
C60.0526 (9)0.0534 (9)0.0385 (8)0.0207 (7)0.0122 (7)0.0192 (7)
C70.0408 (8)0.0397 (7)0.0283 (7)0.0117 (6)0.0106 (6)0.0149 (6)
C80.0399 (8)0.0484 (8)0.0318 (8)0.0104 (6)0.0089 (6)0.0180 (6)
C90.0432 (8)0.0470 (8)0.0349 (8)0.0134 (6)0.0149 (6)0.0202 (6)
C100.0431 (8)0.0422 (8)0.0326 (7)0.0134 (6)0.0102 (6)0.0178 (6)
C110.0523 (9)0.0611 (10)0.0385 (8)0.0127 (8)0.0041 (7)0.0293 (8)
C120.0443 (9)0.0672 (11)0.0508 (10)0.0068 (8)0.0037 (7)0.0322 (8)
C130.0419 (8)0.0615 (10)0.0557 (10)0.0062 (7)0.0067 (7)0.0327 (8)
C140.0438 (8)0.0511 (8)0.0395 (8)0.0101 (7)0.0104 (6)0.0249 (7)
C150.0422 (8)0.0385 (7)0.0297 (7)0.0134 (6)0.0106 (6)0.0156 (6)
N10.0471 (7)0.0536 (7)0.0300 (6)0.0130 (6)0.0121 (5)0.0244 (6)
O10.0812 (9)0.0802 (9)0.0369 (6)0.0369 (7)0.0290 (6)0.0349 (6)
O20.0408 (6)0.0858 (9)0.0426 (6)0.0010 (6)0.0040 (5)0.0379 (6)
O30.0456 (6)0.0742 (8)0.0509 (7)0.0099 (6)0.0170 (5)0.0392 (6)
O1W0.0676 (9)0.1210 (13)0.0514 (8)0.0389 (9)0.0136 (7)0.0234 (8)
Geometric parameters (Å, º) top
C1—C21.385 (2)C9—N11.351 (2)
C1—C61.389 (2)C10—N11.3873 (19)
C1—C71.4941 (19)C10—C111.392 (2)
C2—C31.388 (2)C10—C151.409 (2)
C2—H20.9300C11—C121.368 (2)
C3—O11.3659 (19)C11—H110.9300
C3—C41.379 (2)C12—C131.392 (2)
C4—C51.377 (3)C12—H120.9300
C4—H40.9300C13—C141.372 (2)
C5—C61.385 (2)C13—H130.9300
C5—H50.9300C14—C151.400 (2)
C6—H60.9300C14—H140.9300
C7—C81.352 (2)N1—H1A0.8600
C7—C151.447 (2)O1—H10.8200
C8—O21.3492 (18)O2—H2A0.8200
C8—C91.459 (2)O1W—H1B0.8646
C9—O31.2393 (19)O1W—H1C0.8616
C2—C1—C6119.79 (13)N1—C9—C8115.61 (13)
C2—C1—C7120.22 (13)N1—C10—C11120.39 (13)
C6—C1—C7119.99 (13)N1—C10—C15118.72 (13)
C1—C2—C3119.98 (14)C11—C10—C15120.87 (14)
C1—C2—H2120.0C12—C11—C10119.70 (14)
C3—C2—H2120.0C12—C11—H11120.1
O1—C3—C4117.93 (13)C10—C11—H11120.2
O1—C3—C2121.98 (14)C11—C12—C13120.70 (15)
C4—C3—C2120.09 (15)C11—C12—H12119.6
C5—C4—C3119.96 (14)C13—C12—H12119.6
C5—C4—H4120.0C14—C13—C12119.69 (15)
C3—C4—H4120.0C14—C13—H13120.2
C4—C5—C6120.54 (15)C12—C13—H13120.2
C4—C5—H5119.7C13—C14—C15121.50 (14)
C6—C5—H5119.7C13—C14—H14119.3
C5—C6—C1119.64 (15)C15—C14—H14119.3
C5—C6—H6120.2C14—C15—C10117.51 (13)
C1—C6—H6120.2C14—C15—C7123.74 (13)
C8—C7—C15119.29 (13)C10—C15—C7118.71 (13)
C8—C7—C1119.73 (13)C9—N1—C10125.12 (12)
C15—C7—C1120.97 (13)C9—N1—H1A117.4
O2—C8—C7121.09 (13)C10—N1—H1A117.4
O2—C8—C9116.39 (13)C3—O1—H1109.5
C7—C8—C9122.52 (14)C8—O2—H2A109.5
O3—C9—N1122.18 (13)H1B—O1W—H1C103.4
O3—C9—C8122.21 (14)
C6—C1—C2—C30.1 (2)C7—C8—C9—N10.6 (2)
C7—C1—C2—C3179.25 (13)N1—C10—C11—C12178.30 (15)
C1—C2—C3—O1179.90 (14)C15—C10—C11—C120.2 (3)
C1—C2—C3—C40.3 (2)C10—C11—C12—C131.6 (3)
O1—C3—C4—C5179.72 (15)C11—C12—C13—C141.6 (3)
C2—C3—C4—C50.5 (3)C12—C13—C14—C150.2 (3)
C3—C4—C5—C60.2 (3)C13—C14—C15—C101.1 (2)
C4—C5—C6—C10.2 (3)C13—C14—C15—C7176.67 (15)
C2—C1—C6—C50.4 (2)N1—C10—C15—C14179.69 (13)
C7—C1—C6—C5179.01 (15)C11—C10—C15—C141.1 (2)
C2—C1—C7—C8115.56 (16)N1—C10—C15—C71.8 (2)
C6—C1—C7—C863.8 (2)C11—C10—C15—C7176.81 (14)
C2—C1—C7—C1565.28 (19)C8—C7—C15—C14179.18 (14)
C6—C1—C7—C15115.34 (16)C1—C7—C15—C140.0 (2)
C15—C7—C8—O2179.24 (13)C8—C7—C15—C101.4 (2)
C1—C7—C8—O21.6 (2)C1—C7—C15—C10177.78 (12)
C15—C7—C8—C90.2 (2)O3—C9—N1—C10179.68 (14)
C1—C7—C8—C9178.97 (13)C8—C9—N1—C100.2 (2)
O2—C8—C9—O30.2 (2)C11—C10—N1—C9177.58 (15)
C7—C8—C9—O3179.28 (15)C15—C10—N1—C91.0 (2)
O2—C8—C9—N1179.94 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.9577 (16)169
O1—H1···O1W0.821.922.689 (2)155
O2—H2A···O3ii0.821.992.6500 (16)138
O2—H2A···O30.822.282.7242 (14)115
O1W—H1B···O1Wiii0.862.372.816 (3)113
O1W—H1C···O2iv0.862.042.8476 (18)157
Symmetry codes: (i) x, y, z1; (ii) x+3, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H11NO3·H2O
Mr271.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.9845 (5), 10.0632 (7), 10.3361 (6)
α, β, γ (°)109.204 (6), 103.251 (5), 101.015 (6)
V3)639.12 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.783, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
5057, 2225, 1958
Rint0.018
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.132, 1.10
No. of reflections2225
No. of parameters184
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.9577 (16)169.3
O1—H1···O1W0.821.922.689 (2)154.7
O2—H2A···O3ii0.821.992.6500 (16)137.6
O2—H2A···O30.822.282.7242 (14)114.9
O1W—H1B···O1Wiii0.862.372.816 (3)112.8
O1W—H1C···O2iv0.862.042.8476 (18)156.8
Symmetry codes: (i) x, y, z1; (ii) x+3, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x1, y, z.
 

Acknowledgements

The authors thank the Fund of Guangzhou Science and Technology Program (2010Y1-C371), the Doctors to Start Research Fund of Guangzhou Medical College (2008 C25) and the Science Fund of the Education Bureau of Guangzhou City (10 A168) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBirkinshaw, J. H., Luckner, M., Mohammed, Y. S., Mothes, K. & Stickings, C. E. (1963). Biochem. J. 89, 196–202.  PubMed CAS Web of Science Google Scholar
First citationBracken, A., Pocker, A. & Raistrick, H. (1954). Biochem. J. 57, 587–595.  PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeflon, V. M., Bessler, K., Kretschmar, M. & Abram, U. (2000). Z. Anorg. Allg. Chem. 626, 1545–1549.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFremlin, L. J., Piggott, A. M., Lacey, E. & Capon, R. (2009). J. Nat. Prod., 72, 666–670.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKobayashi, Y. & Harayama, T. (2009). Org. Lett. 11, 1603–1606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKozlovskii, A. G., Zhelifonova, V. P., Antipova, V. M., Shnyreva, A. V. & Viktorov, A. N. (2002). Microbiology, 71, 6666–6669.  Web of Science CrossRef Google Scholar
First citationLin, J., Ke, A. B., Zhang, X. L., Zheng, Z. H., Zhu, J. T., Lu, X. H., Li, Y. Y., Gui, X. L., Shi, Y., Zhang, H. & He, J. G. (2008). Zhongguo Kangshengsu Zazhi, 33, 463–466.  CAS Google Scholar
First citationLund, F. & Frisvad, J. C. (1994). Mycol. Res. 98, 481–492.  CrossRef Google Scholar
First citationProksch, P., Ebel, R., Edrada, R., Riebe, F., Liu, H. B., Diesel, A., Bayer, M., Li, X., Lin, W. H., Grebenyuk, V., Mueller, W. E. G., Draeger, S. & Zuccaro, A. (2008). Botanica Marina, 51, 209–218.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrashnova, S. B., Koval'chukova, O. V., Zaitsev, B. E. & Stash, A. I. (2008). Koord. Khim. 34, 783–787.  CrossRef Google Scholar
First citationYurchenko, A. N., Smetanina, O. F., Kalinovsky, A. I., Pivkin, M. V., Dmitrenok, P. S. & Kuznetsova, T. A. (2010). Russ. Chem. Bull. 59, 852–856.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2195-o2196
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds