organic compounds
3-Hydroxy-4-(3-hydroxyphenyl)-2-quinolone monohydrate
aSchool of Basic Science, Guangzhou Medical College, Guangzhou 510182, People's Republic of China, and bGuangdong Institute for Drug Control, Guangzhou 510180, People's Republic of China
*Correspondence e-mail: yywentao@yahoo.com.cn
In the title compound, also known as viridicatol monohydrate, C15H11NO3·H2O, the dihedral angle between the benzene ring and quinoline ring system is 64.76 (5)°. An intramolecular O—H⋯O hydrogen bond occurs. The is stabilized by classical intermolecular N—H⋯O and O—H⋯O hydrogen bonds and weak π–π interactions with a centroid–centroid distance of 3.8158 (10) Å.
Related literature
For 3-hydroxy-2(1H)-pyridinone, see: Deflon et al. (2000) and for 3-hydroxy-2-oxo-1,2-dihydroquinoline, see: Strashnova et al. (2008). For the isolation of viridicatol, see: Yurchenko et al. (2010); Fremlin et al. (2009); Proksch et al. (2008); Lund & Frisvad (1994); Birkinshaw et al. (1963); Kozlovskii et al. (2002). For the synthesis of viridicatol, see: Kobayashi & Harayama (2009). For examples of viridicatol derivatives, see: Bracken et al. (1954). For the biological activity of viridicatol, see: Lin et al. (2008); Proksch et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053681102945X/bg2408sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681102945X/bg2408Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681102945X/bg2408Isup3.mol
Supporting information file. DOI: 10.1107/S160053681102945X/bg2408Isup4.cml
The fungus phomposis sp was isolated from the mangrove tree, Zhanjiang, and was stored at the Department of Applied Chemistry, Zhongshan University, Guangzhou, China. Starter cultures (from Professor Shining Zhou) were maintained on cornmeal seawater agar. Plugs of agar supporting mycelium growth were cut from solid culture medium and transferred aseptically to a 250 ml Erlenmeyer flask containing 100 ml liquid medium. The fungus was incubated at 28 °C and placed thirty days. The culture was filtered through cheesecloth. The mycelium was air-dried and then extracted in methanol. The CH3OH extract of the fungal mycelium was chromatographed on silica gel by using a gradient from petroleum to ethyl acetate, then from acetate to methanol, and obtained viridicatol eluted with 50% ethyl acetate-petroleum ether. Colorless block crystals were grown from a solution in methanol at room temperature over several days.
H atoms bonded to C atoms were positioned geometrically and treated as riding, with C—H distances of 0.93 Å and Uiso(H)=1.2Ueq(C). H atoms involved in hydrogen-bonding interactions (water, pyridinone, and hydroxy) were located from difference Fourier maps, idealized and refined with a riding scheme.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. The hydrogen bonds are shown as dashed lines. |
C15H11NO3·H2O | Z = 2 |
Mr = 271.26 | F(000) = 284 |
Triclinic, P1 | Dx = 1.410 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 6.9845 (5) Å | Cell parameters from 5194 reflections |
b = 10.0632 (7) Å | θ = 4.8–69.4° |
c = 10.3361 (6) Å | µ = 0.86 mm−1 |
α = 109.204 (6)° | T = 298 K |
β = 103.251 (5)° | Block, colorless |
γ = 101.015 (6)° | 0.30 × 0.20 × 0.05 mm |
V = 639.12 (9) Å3 |
Bruker SMART CCD area-detector diffractometer | 2225 independent reflections |
Radiation source: fine-focus sealed tube | 1958 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 66.0°, θmin = 4.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −8→8 |
Tmin = 0.783, Tmax = 0.958 | k = −11→11 |
5057 measured reflections | l = −12→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0774P)2 + 0.123P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2225 reflections | Δρmax = 0.22 e Å−3 |
184 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.028 (3) |
C15H11NO3·H2O | γ = 101.015 (6)° |
Mr = 271.26 | V = 639.12 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9845 (5) Å | Cu Kα radiation |
b = 10.0632 (7) Å | µ = 0.86 mm−1 |
c = 10.3361 (6) Å | T = 298 K |
α = 109.204 (6)° | 0.30 × 0.20 × 0.05 mm |
β = 103.251 (5)° |
Bruker SMART CCD area-detector diffractometer | 2225 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1958 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 0.958 | Rint = 0.018 |
5057 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 1 restraint |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.22 e Å−3 |
2225 reflections | Δρmin = −0.27 e Å−3 |
184 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.0143 (2) | 0.24292 (15) | 0.66031 (14) | 0.0370 (4) | |
C2 | 0.9196 (2) | 0.30457 (16) | 0.75933 (15) | 0.0385 (4) | |
H2 | 0.8371 | 0.3630 | 0.7413 | 0.046* | |
C3 | 0.9479 (2) | 0.27913 (17) | 0.88547 (15) | 0.0428 (4) | |
C4 | 1.0709 (3) | 0.19305 (19) | 0.91275 (17) | 0.0516 (4) | |
H4 | 1.0906 | 0.1766 | 0.9976 | 0.062* | |
C5 | 1.1646 (3) | 0.1315 (2) | 0.81423 (18) | 0.0542 (4) | |
H5 | 1.2471 | 0.0732 | 0.8328 | 0.065* | |
C6 | 1.1371 (3) | 0.15549 (18) | 0.68768 (17) | 0.0474 (4) | |
H6 | 1.2004 | 0.1133 | 0.6213 | 0.057* | |
C7 | 0.9865 (2) | 0.27142 (15) | 0.52515 (14) | 0.0359 (4) | |
C8 | 1.1501 (2) | 0.34609 (16) | 0.50295 (15) | 0.0402 (4) | |
C9 | 1.1342 (2) | 0.37555 (17) | 0.37236 (16) | 0.0401 (4) | |
C10 | 0.7706 (2) | 0.24388 (16) | 0.28851 (15) | 0.0386 (4) | |
C11 | 0.5843 (3) | 0.18891 (19) | 0.17754 (17) | 0.0504 (4) | |
H11 | 0.5750 | 0.2066 | 0.0938 | 0.061* | |
C12 | 0.4149 (3) | 0.1087 (2) | 0.19222 (19) | 0.0565 (5) | |
H12 | 0.2913 | 0.0699 | 0.1171 | 0.068* | |
C13 | 0.4255 (3) | 0.0846 (2) | 0.31846 (19) | 0.0533 (4) | |
H13 | 0.3088 | 0.0321 | 0.3285 | 0.064* | |
C14 | 0.6089 (2) | 0.13873 (17) | 0.42801 (17) | 0.0439 (4) | |
H14 | 0.6150 | 0.1220 | 0.5119 | 0.053* | |
C15 | 0.7871 (2) | 0.21856 (15) | 0.41627 (14) | 0.0361 (4) | |
N1 | 0.94503 (19) | 0.32206 (14) | 0.27371 (13) | 0.0416 (3) | |
H1A | 0.9317 | 0.3377 | 0.1956 | 0.050* | |
O1 | 0.8573 (2) | 0.33744 (15) | 0.98597 (12) | 0.0589 (4) | |
H1 | 0.8083 | 0.3993 | 0.9673 | 0.088* | |
O2 | 1.33807 (17) | 0.39862 (15) | 0.60257 (12) | 0.0576 (4) | |
H2A | 1.4195 | 0.4438 | 0.5749 | 0.086* | |
O3 | 1.28439 (17) | 0.44529 (14) | 0.35328 (12) | 0.0537 (4) | |
O1W | 0.5902 (2) | 0.4697 (2) | 0.88892 (15) | 0.0819 (5) | |
H1B | 0.4875 | 0.4143 | 0.8981 | 0.098* | |
H1C | 0.5456 | 0.4629 | 0.8014 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0379 (7) | 0.0408 (7) | 0.0291 (7) | 0.0062 (6) | 0.0054 (6) | 0.0162 (6) |
C2 | 0.0447 (8) | 0.0449 (8) | 0.0297 (7) | 0.0136 (6) | 0.0100 (6) | 0.0201 (6) |
C3 | 0.0505 (8) | 0.0485 (8) | 0.0297 (7) | 0.0105 (7) | 0.0108 (6) | 0.0189 (6) |
C4 | 0.0659 (10) | 0.0592 (10) | 0.0345 (8) | 0.0197 (8) | 0.0084 (7) | 0.0283 (7) |
C5 | 0.0641 (10) | 0.0588 (10) | 0.0450 (9) | 0.0281 (8) | 0.0084 (8) | 0.0273 (8) |
C6 | 0.0526 (9) | 0.0534 (9) | 0.0385 (8) | 0.0207 (7) | 0.0122 (7) | 0.0192 (7) |
C7 | 0.0408 (8) | 0.0397 (7) | 0.0283 (7) | 0.0117 (6) | 0.0106 (6) | 0.0149 (6) |
C8 | 0.0399 (8) | 0.0484 (8) | 0.0318 (8) | 0.0104 (6) | 0.0089 (6) | 0.0180 (6) |
C9 | 0.0432 (8) | 0.0470 (8) | 0.0349 (8) | 0.0134 (6) | 0.0149 (6) | 0.0202 (6) |
C10 | 0.0431 (8) | 0.0422 (8) | 0.0326 (7) | 0.0134 (6) | 0.0102 (6) | 0.0178 (6) |
C11 | 0.0523 (9) | 0.0611 (10) | 0.0385 (8) | 0.0127 (8) | 0.0041 (7) | 0.0293 (8) |
C12 | 0.0443 (9) | 0.0672 (11) | 0.0508 (10) | 0.0068 (8) | −0.0037 (7) | 0.0322 (8) |
C13 | 0.0419 (8) | 0.0615 (10) | 0.0557 (10) | 0.0062 (7) | 0.0067 (7) | 0.0327 (8) |
C14 | 0.0438 (8) | 0.0511 (8) | 0.0395 (8) | 0.0101 (7) | 0.0104 (6) | 0.0249 (7) |
C15 | 0.0422 (8) | 0.0385 (7) | 0.0297 (7) | 0.0134 (6) | 0.0106 (6) | 0.0156 (6) |
N1 | 0.0471 (7) | 0.0536 (7) | 0.0300 (6) | 0.0130 (6) | 0.0121 (5) | 0.0244 (6) |
O1 | 0.0812 (9) | 0.0802 (9) | 0.0369 (6) | 0.0369 (7) | 0.0290 (6) | 0.0349 (6) |
O2 | 0.0408 (6) | 0.0858 (9) | 0.0426 (6) | −0.0010 (6) | 0.0040 (5) | 0.0379 (6) |
O3 | 0.0456 (6) | 0.0742 (8) | 0.0509 (7) | 0.0099 (6) | 0.0170 (5) | 0.0392 (6) |
O1W | 0.0676 (9) | 0.1210 (13) | 0.0514 (8) | 0.0389 (9) | 0.0136 (7) | 0.0234 (8) |
C1—C2 | 1.385 (2) | C9—N1 | 1.351 (2) |
C1—C6 | 1.389 (2) | C10—N1 | 1.3873 (19) |
C1—C7 | 1.4941 (19) | C10—C11 | 1.392 (2) |
C2—C3 | 1.388 (2) | C10—C15 | 1.409 (2) |
C2—H2 | 0.9300 | C11—C12 | 1.368 (2) |
C3—O1 | 1.3659 (19) | C11—H11 | 0.9300 |
C3—C4 | 1.379 (2) | C12—C13 | 1.392 (2) |
C4—C5 | 1.377 (3) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C13—C14 | 1.372 (2) |
C5—C6 | 1.385 (2) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C14—C15 | 1.400 (2) |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.352 (2) | N1—H1A | 0.8600 |
C7—C15 | 1.447 (2) | O1—H1 | 0.8200 |
C8—O2 | 1.3492 (18) | O2—H2A | 0.8200 |
C8—C9 | 1.459 (2) | O1W—H1B | 0.8646 |
C9—O3 | 1.2393 (19) | O1W—H1C | 0.8616 |
C2—C1—C6 | 119.79 (13) | N1—C9—C8 | 115.61 (13) |
C2—C1—C7 | 120.22 (13) | N1—C10—C11 | 120.39 (13) |
C6—C1—C7 | 119.99 (13) | N1—C10—C15 | 118.72 (13) |
C1—C2—C3 | 119.98 (14) | C11—C10—C15 | 120.87 (14) |
C1—C2—H2 | 120.0 | C12—C11—C10 | 119.70 (14) |
C3—C2—H2 | 120.0 | C12—C11—H11 | 120.1 |
O1—C3—C4 | 117.93 (13) | C10—C11—H11 | 120.2 |
O1—C3—C2 | 121.98 (14) | C11—C12—C13 | 120.70 (15) |
C4—C3—C2 | 120.09 (15) | C11—C12—H12 | 119.6 |
C5—C4—C3 | 119.96 (14) | C13—C12—H12 | 119.6 |
C5—C4—H4 | 120.0 | C14—C13—C12 | 119.69 (15) |
C3—C4—H4 | 120.0 | C14—C13—H13 | 120.2 |
C4—C5—C6 | 120.54 (15) | C12—C13—H13 | 120.2 |
C4—C5—H5 | 119.7 | C13—C14—C15 | 121.50 (14) |
C6—C5—H5 | 119.7 | C13—C14—H14 | 119.3 |
C5—C6—C1 | 119.64 (15) | C15—C14—H14 | 119.3 |
C5—C6—H6 | 120.2 | C14—C15—C10 | 117.51 (13) |
C1—C6—H6 | 120.2 | C14—C15—C7 | 123.74 (13) |
C8—C7—C15 | 119.29 (13) | C10—C15—C7 | 118.71 (13) |
C8—C7—C1 | 119.73 (13) | C9—N1—C10 | 125.12 (12) |
C15—C7—C1 | 120.97 (13) | C9—N1—H1A | 117.4 |
O2—C8—C7 | 121.09 (13) | C10—N1—H1A | 117.4 |
O2—C8—C9 | 116.39 (13) | C3—O1—H1 | 109.5 |
C7—C8—C9 | 122.52 (14) | C8—O2—H2A | 109.5 |
O3—C9—N1 | 122.18 (13) | H1B—O1W—H1C | 103.4 |
O3—C9—C8 | 122.21 (14) | ||
C6—C1—C2—C3 | 0.1 (2) | C7—C8—C9—N1 | −0.6 (2) |
C7—C1—C2—C3 | −179.25 (13) | N1—C10—C11—C12 | 178.30 (15) |
C1—C2—C3—O1 | −179.90 (14) | C15—C10—C11—C12 | −0.2 (3) |
C1—C2—C3—C4 | 0.3 (2) | C10—C11—C12—C13 | 1.6 (3) |
O1—C3—C4—C5 | 179.72 (15) | C11—C12—C13—C14 | −1.6 (3) |
C2—C3—C4—C5 | −0.5 (3) | C12—C13—C14—C15 | 0.2 (3) |
C3—C4—C5—C6 | 0.2 (3) | C13—C14—C15—C10 | 1.1 (2) |
C4—C5—C6—C1 | 0.2 (3) | C13—C14—C15—C7 | −176.67 (15) |
C2—C1—C6—C5 | −0.4 (2) | N1—C10—C15—C14 | −179.69 (13) |
C7—C1—C6—C5 | 179.01 (15) | C11—C10—C15—C14 | −1.1 (2) |
C2—C1—C7—C8 | 115.56 (16) | N1—C10—C15—C7 | −1.8 (2) |
C6—C1—C7—C8 | −63.8 (2) | C11—C10—C15—C7 | 176.81 (14) |
C2—C1—C7—C15 | −65.28 (19) | C8—C7—C15—C14 | 179.18 (14) |
C6—C1—C7—C15 | 115.34 (16) | C1—C7—C15—C14 | 0.0 (2) |
C15—C7—C8—O2 | 179.24 (13) | C8—C7—C15—C10 | 1.4 (2) |
C1—C7—C8—O2 | −1.6 (2) | C1—C7—C15—C10 | −177.78 (12) |
C15—C7—C8—C9 | −0.2 (2) | O3—C9—N1—C10 | −179.68 (14) |
C1—C7—C8—C9 | 178.97 (13) | C8—C9—N1—C10 | 0.2 (2) |
O2—C8—C9—O3 | −0.2 (2) | C11—C10—N1—C9 | −177.58 (15) |
C7—C8—C9—O3 | 179.28 (15) | C15—C10—N1—C9 | 1.0 (2) |
O2—C8—C9—N1 | 179.94 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.11 | 2.9577 (16) | 169 |
O1—H1···O1W | 0.82 | 1.92 | 2.689 (2) | 155 |
O2—H2A···O3ii | 0.82 | 1.99 | 2.6500 (16) | 138 |
O2—H2A···O3 | 0.82 | 2.28 | 2.7242 (14) | 115 |
O1W—H1B···O1Wiii | 0.86 | 2.37 | 2.816 (3) | 113 |
O1W—H1C···O2iv | 0.86 | 2.04 | 2.8476 (18) | 157 |
Symmetry codes: (i) x, y, z−1; (ii) −x+3, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C15H11NO3·H2O |
Mr | 271.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.9845 (5), 10.0632 (7), 10.3361 (6) |
α, β, γ (°) | 109.204 (6), 103.251 (5), 101.015 (6) |
V (Å3) | 639.12 (9) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.30 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.783, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5057, 2225, 1958 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.593 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.132, 1.10 |
No. of reflections | 2225 |
No. of parameters | 184 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.27 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.11 | 2.9577 (16) | 169.3 |
O1—H1···O1W | 0.82 | 1.92 | 2.689 (2) | 154.7 |
O2—H2A···O3ii | 0.82 | 1.99 | 2.6500 (16) | 137.6 |
O2—H2A···O3 | 0.82 | 2.28 | 2.7242 (14) | 114.9 |
O1W—H1B···O1Wiii | 0.86 | 2.37 | 2.816 (3) | 112.8 |
O1W—H1C···O2iv | 0.86 | 2.04 | 2.8476 (18) | 156.8 |
Symmetry codes: (i) x, y, z−1; (ii) −x+3, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x−1, y, z. |
Acknowledgements
The authors thank the Fund of Guangzhou Science and Technology Program (2010Y1-C371), the Doctors to Start Research Fund of Guangzhou Medical College (2008 C25) and the Science Fund of the Education Bureau of Guangzhou City (10 A168) for financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Birkinshaw, J. H., Luckner, M., Mohammed, Y. S., Mothes, K. & Stickings, C. E. (1963). Biochem. J. 89, 196–202. PubMed CAS Web of Science Google Scholar
Bracken, A., Pocker, A. & Raistrick, H. (1954). Biochem. J. 57, 587–595. PubMed CAS Google Scholar
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deflon, V. M., Bessler, K., Kretschmar, M. & Abram, U. (2000). Z. Anorg. Allg. Chem. 626, 1545–1549. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fremlin, L. J., Piggott, A. M., Lacey, E. & Capon, R. (2009). J. Nat. Prod., 72, 666–670. Web of Science CrossRef PubMed CAS Google Scholar
Kobayashi, Y. & Harayama, T. (2009). Org. Lett. 11, 1603–1606. Web of Science CrossRef PubMed CAS Google Scholar
Kozlovskii, A. G., Zhelifonova, V. P., Antipova, V. M., Shnyreva, A. V. & Viktorov, A. N. (2002). Microbiology, 71, 6666–6669. Web of Science CrossRef Google Scholar
Lin, J., Ke, A. B., Zhang, X. L., Zheng, Z. H., Zhu, J. T., Lu, X. H., Li, Y. Y., Gui, X. L., Shi, Y., Zhang, H. & He, J. G. (2008). Zhongguo Kangshengsu Zazhi, 33, 463–466. CAS Google Scholar
Lund, F. & Frisvad, J. C. (1994). Mycol. Res. 98, 481–492. CrossRef Google Scholar
Proksch, P., Ebel, R., Edrada, R., Riebe, F., Liu, H. B., Diesel, A., Bayer, M., Li, X., Lin, W. H., Grebenyuk, V., Mueller, W. E. G., Draeger, S. & Zuccaro, A. (2008). Botanica Marina, 51, 209–218. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strashnova, S. B., Koval'chukova, O. V., Zaitsev, B. E. & Stash, A. I. (2008). Koord. Khim. 34, 783–787. CrossRef Google Scholar
Yurchenko, A. N., Smetanina, O. F., Kalinovsky, A. I., Pivkin, M. V., Dmitrenok, P. S. & Kuznetsova, T. A. (2010). Russ. Chem. Bull. 59, 852–856. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-hydroxy-4-(3-hydroxyphenyl)-2-quinolone, also known as viridicatol, C15H13NO4 (I), was first isolated from Penicillium viridicatum Westling (Birkinshaw et al., 1963). It has been proven that viridicatol can completely inhibit the spleen lymphocytes proliferation (Lin et al., 2008) and suppress larval growth of the polyphagous pest insect Spodoptera littoralis (Proksch et al., 2008). Viridicatol can be isolated from Penicillium aurantiogriseum sensu lato (Lund et al., 1994), Penicillium chrysogenum strains (Kozlovskii et al., 2002), Penicillium sp from specimens of suberites domuncula (Proksch et al., 2008), an Australian marine-derived isolate of Aspergillus versicolor (Fremlin et al., 2009), and the marine fungus Aspergillus versicolor (Yurchenko et al., 2010). A similar compound, viridicatin, could be isolated from Penicillium cyclopium Westling (Bracken et al., 1954). Viridicatol also can be synthesized by one-pot method from cyanoacetanilides through Knoevenagel condensation followed by decyanative epoxide-arene cyclization (Kobayashi et al., 2009), but so far the crystal structure of viridicatol has not been reported.
The title compound can be considered as containing embedded 3-hydroxy-2(1H)-pyridinone, or 3-hydroxy-2-oxo-1,2-dihydroquinoline, motifs (Fig. 1). The crystal structures of both groups have already been reported (Deflon et al., 2000 and Strashnova et al., 2008) and their structural parameters are similar to those in I.
The 3-hydroxylbenzyl ring subtends a torsion angle of 64.76 (5)° to the quinoline to reduce the steric effect. The structure contains a water molecule which is involved in three out of the six hydrogen bonds formed (Table 1). The whole structure is a 3-D hydrogen-bonding architecture, futther stabilized by the weak π-π interaction between two pyridinone rings with a Cg1···Cg1 (2 - x,1 - y,1 - z) separation of 3.8158 (10) Å and the dihedral angle is zero (where Cg1 is the centroid of the N1/C7—C10/C15). Both weak interactions of hydrogen bonds and π-π effect consolidate the stability of the structure.