metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-1,2-Bis[bis­(4-meth­­oxy­phen­yl)phosphan­yl]-1,2-di­methyl­hydrazine-κ2P:P′}bis­­[chloridogold(I)] tetra­hydro­furan disolvate

aAuTEK, Mintek, Private Bag X3015, Randburg, 2125, South Africa, and bMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, Johannesburg, South Africa
*Correspondence e-mail: erikk@mintek.co.za

(Received 29 June 2011; accepted 18 July 2011; online 30 July 2011)

The title compound, [Au2Cl2(C30H34N2O4P2)]·2C4H8O, is formed from a bidentate phosphine ligand complexed to two almost linearly coordinated gold(I) atoms [P—Au—Cl = 175.68 (3) Å]. The nuclei are 3.122 (2) Å apart. The mol­ecule exhibits a twofold rotation axis.

Related literature

For the synthesis of the parent ligand and related structures utilizing alternative metals, see: Reddy et al. (1994[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355-1357.], 1995[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483-5488.]); Slawin et al. (2002[Slawin, A. M. Z., Wainwright, M. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp. 513-519.]); Kriel et al. (2010a[Kriel, F. H., Fernandes, M. A. & Caddy, J. (2010a). Acta Cryst. E66, o1270.],b[Kriel, F. H., Fernandes, M. A. & Coates, J. (2010b). Acta Cryst. E66, m710.], 2011a[Kriel, F. H., Fernandes, M. A. & Coates, J. (2011a). Acta Cryst. E67, m42.],b[Kriel, F. H., Fernandes, M. A. & Coates, J. (2011b). Acta Cryst. E67, m155.]). For Au⋯Au inter­actions, see: Holleman & Wiberg (2001[Holleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry, p. 1248. San Diego: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Cl2(C30H34N2O4P2)]·2C4H8O

  • Mr = 1157.57

  • Monoclinic, C 2/c

  • a = 23.208 (5) Å

  • b = 9.080 (5) Å

  • c = 20.220 (5) Å

  • β = 92.414 (5)°

  • V = 4257 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.13 mm−1

  • T = 173 K

  • 0.58 × 0.45 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.044, Tmax = 0.567

  • 33198 measured reflections

  • 5264 independent reflections

  • 4679 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 1.04

  • 5264 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (C30H34Au2Cl2N2O4P2.2(C4H8O)), formed from a bidentate phosphine ligand complexed to two linear gold(I) nuclei, readilly crystalizes out of dichloromethane (DCM) with the addition of a few drops of tetrahydrofuran (THF). The crystal structure includes a THF solvent molecule. The complex molecule is bisected by a two fold axis throul the N-N' and Au-Au' lines (Fig 1). Gold(I) has an almost linear coordination with a P—Au—Cl angle of 175.68 (3) °. The Au—Au distance within the complex is 3.122 (2) Å, well within the range of aurophilic interactions (described in Holleman et al., 2001, as being normally between 2.7 Å and 3.4 Å). Other bond lengths are within expected ranges.

The structure exhibits columns of complexes arranged head-to-tail along b, forming channels filled with THF. There is an intercolumnar contact involving chloride atoms in one molecule and hydrogen atoms on the methyl substituted hydrazine bridge of a neighbouring one, in the same column (Cl1···H1ci: 2.892Å, (i): 1-x,1+y,1/2-z, site A in Fig 2). There are also weak intercolumnar H-bonding contacts (O1···H13ii: 2.629Å, (ii): 3/2-x,-1/2-y,1-z), site B in Fig 2). Finally, the THF solvato molecule is weakly attached to the columns by a pair of O···H contacts (O3···H15:2.608 Å; O3···H15b: 2.557 Å) (site C in Fig. 2).

Related literature top

For the synthesis of the parent ligand and related structures utilizing alternative metals, see: Reddy et al. (1994, 1995); Slawin et al. (2002); Kriel et al. (2010a,b, 2011a,b). For Au···Au interactions, see: Holleman & Wiberg (2001).

Experimental top

The complex was synthesized by dissolving tetrahydrothiophenegold(I) chloride [(THT)AuCl] in DCM and adding 0.5 equivalents of the corresponding ligand (bis(di(4-methoxyphenyl)phosphino)-1,2-dimethylhydrazine. The addition of a few drops of THF led to the growth of crystals suitable for use in single-crystal X-Ray analysis. The presence of THF during the initial complexation led to undesirable side products as a result of the breakdown of the ligand.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (CH) or 0.96 (CH3) Å, and with Ueq = 1.2 (CH) or 1.5 (CH3) Ueq(C).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of I drawn with displacement ellipsoids at the 50% probability level. Hydrogen atoms and solvent THF have been omitted for clarity.
[Figure 2] Fig. 2. : Packing of compound I showing short contacts.
{µ-1,2-Bis[bis(4-methoxyphenyl)phosphanyl]-1,2-dimethylhydrazine- κ2P:P'}bis[chloridogold(I)] tetrahydrofuran disolvate top
Crystal data top
[Au2Cl2(C30H34N2O4P2)]·2C4H8OF(000) = 2248
Mr = 1157.57Dx = 1.806 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7327 reflections
a = 23.208 (5) Åθ = 2.4–28.3°
b = 9.080 (5) ŵ = 7.13 mm1
c = 20.220 (5) ÅT = 173 K
β = 92.414 (5)°Plate, colourless
V = 4257 (3) Å30.58 × 0.45 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5264 independent reflections
Radiation source: fine-focus sealed tube4679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3030
Tmin = 0.044, Tmax = 0.567k = 1211
33198 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0199P)2 + 7.2119P]
where P = (Fo2 + 2Fc2)/3
5264 reflections(Δ/σ)max = 0.004
235 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Au2Cl2(C30H34N2O4P2)]·2C4H8OV = 4257 (3) Å3
Mr = 1157.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.208 (5) ŵ = 7.13 mm1
b = 9.080 (5) ÅT = 173 K
c = 20.220 (5) Å0.58 × 0.45 × 0.10 mm
β = 92.414 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5264 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4679 reflections with I > 2σ(I)
Tmin = 0.044, Tmax = 0.567Rint = 0.040
33198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.04Δρmax = 1.08 e Å3
5264 reflectionsΔρmin = 0.80 e Å3
235 parameters
Special details top

Experimental. Reaction: bis(di(4-methoxyphenyl)phosphino)-1,2-dimethylhydrazine: 167 mg (0.29 mmol), (THT)AuCl: 200 mg (0.57 mmol), dichloromethane: 5 ml, tetrahydrofuran: few drops, Yield: 75%. Colourless to grey crystals. 1H NMR: (CDCl3, 300 MHz) δH 7.79 (t, Arom, J = 8.2 Hz, 4H) 7.41 (t, Arom, J = 8.2 Hz, 4H), 6.97 (d, Arom, J = 7.6 Hz, 4H), 6.81 (d, Arom, J = 7.6 Hz, 4H), 3.86 (s, OMe, 6H), 3.81 (s, OMe, 6H), 2.69 (d, NCH3, 3J (1H-31P) = 5.8 Hz, 6H). 13C NMR: (CDCl3, 75 MHz) δC 163.5 (d, Arom, J = 33.4 Hz), 135.9 (m, Arom), 115.3 (m, Arom), 55.52 and 55.45 (s, OCH3), 35.1 (s, NCH3). 31P NMR:(CDCl3, 121 MHz) δP 85.1. MS: 977 (83%, M - Cl), 245 (80%, P(PhOMe)2). EA:Calc: (Au2Cl2P2O4N2C30H34) C 35.56%, H 3.38%, N 2.76%. Found: C 36.78%, H 3.79%, N 2.47%. MP: 166 – 170 °C.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56719 (14)0.3148 (4)0.26405 (15)0.0437 (8)
H1A0.59740.30500.29760.066*
H1B0.58300.30400.22120.066*
H1C0.54970.41020.26730.066*
C110.58836 (10)0.0866 (3)0.37553 (12)0.0238 (5)
C120.60878 (11)0.1775 (3)0.42700 (13)0.0316 (6)
H120.58360.24130.44730.038*
C130.66594 (12)0.1732 (3)0.44792 (14)0.0383 (6)
H130.67940.23510.48180.046*
C140.70353 (11)0.0767 (3)0.41852 (15)0.0360 (6)
C150.68388 (11)0.0165 (3)0.36871 (13)0.0337 (6)
H150.70890.08260.34960.040*
C160.62614 (11)0.0104 (3)0.34742 (12)0.0287 (5)
H160.61270.07270.31370.034*
C170.80122 (14)0.0045 (5)0.4075 (2)0.0714 (12)
H17A0.83850.01800.42910.107*
H17B0.79160.09830.40690.107*
H17C0.80190.04050.36290.107*
C210.47826 (10)0.2085 (3)0.40186 (12)0.0237 (5)
C220.45316 (11)0.1382 (3)0.45396 (13)0.0287 (5)
H220.45340.03580.45590.034*
C230.42742 (12)0.2182 (3)0.50370 (13)0.0336 (6)
H230.41130.16990.53900.040*
C240.42619 (11)0.3700 (3)0.49983 (14)0.0299 (6)
C250.45039 (11)0.4422 (3)0.44695 (13)0.0283 (5)
H250.44900.54440.44420.034*
C260.47638 (11)0.3615 (3)0.39880 (13)0.0271 (5)
H260.49290.41000.36380.032*
C270.3811 (2)0.3925 (4)0.6031 (2)0.0793 (16)
H27A0.36530.46640.63100.119*
H27B0.35170.32230.59060.119*
H27C0.41220.34310.62670.119*
C310.7520 (3)0.4212 (6)0.2921 (3)0.1022 (19)
H31A0.71210.41370.27600.123*
H31B0.77670.38970.25740.123*
C320.7659 (4)0.5757 (6)0.3128 (3)0.127 (3)
H32A0.78990.62310.28090.152*
H32B0.73090.63300.31670.152*
C330.7965 (3)0.5625 (8)0.3765 (3)0.124 (2)
H33A0.83480.60480.37510.149*
H33B0.77570.61140.41080.149*
C340.7993 (5)0.4148 (8)0.3874 (6)0.240 (8)
H34A0.79150.39530.43330.288*
H34B0.83810.38090.37990.288*
N10.52377 (8)0.2011 (2)0.27315 (10)0.0240 (4)
O10.75927 (9)0.0834 (3)0.44229 (12)0.0507 (6)
O20.40217 (9)0.4604 (2)0.54504 (10)0.0417 (5)
O30.76126 (16)0.3366 (4)0.3477 (2)0.0940 (11)
P10.51542 (3)0.10079 (7)0.34180 (3)0.02187 (13)
Cl10.41744 (3)0.31848 (8)0.29583 (4)0.04364 (17)
Au10.470213 (4)0.109672 (10)0.317798 (4)0.02473 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0542 (17)0.0412 (18)0.0345 (15)0.0252 (15)0.0130 (13)0.0115 (13)
C110.0244 (11)0.0244 (13)0.0223 (12)0.0004 (9)0.0026 (9)0.0014 (9)
C120.0331 (13)0.0307 (15)0.0305 (13)0.0038 (11)0.0052 (10)0.0078 (11)
C130.0369 (14)0.0387 (17)0.0382 (15)0.0021 (13)0.0091 (11)0.0123 (13)
C140.0283 (12)0.0405 (17)0.0384 (16)0.0014 (12)0.0084 (11)0.0013 (13)
C150.0300 (13)0.0370 (16)0.0342 (14)0.0065 (11)0.0013 (11)0.0036 (12)
C160.0310 (12)0.0309 (14)0.0241 (12)0.0002 (11)0.0003 (10)0.0053 (10)
C170.0293 (15)0.090 (3)0.094 (3)0.0153 (18)0.0118 (17)0.027 (2)
C210.0246 (11)0.0223 (13)0.0239 (12)0.0024 (9)0.0029 (9)0.0021 (9)
C220.0330 (13)0.0221 (13)0.0309 (14)0.0019 (10)0.0028 (10)0.0007 (10)
C230.0398 (14)0.0312 (15)0.0304 (14)0.0001 (12)0.0081 (11)0.0017 (11)
C240.0275 (12)0.0299 (15)0.0326 (14)0.0018 (10)0.0026 (10)0.0079 (11)
C250.0303 (12)0.0209 (13)0.0333 (14)0.0026 (10)0.0026 (10)0.0009 (11)
C260.0287 (12)0.0235 (13)0.0289 (13)0.0007 (10)0.0001 (10)0.0006 (10)
C270.114 (4)0.055 (3)0.074 (3)0.018 (2)0.062 (3)0.026 (2)
C310.154 (6)0.091 (4)0.064 (3)0.039 (4)0.022 (3)0.004 (3)
C320.229 (8)0.068 (4)0.085 (4)0.009 (4)0.042 (5)0.008 (3)
C330.185 (7)0.100 (5)0.090 (5)0.055 (5)0.018 (4)0.011 (4)
C340.248 (11)0.096 (6)0.356 (17)0.057 (6)0.225 (12)0.061 (7)
N10.0299 (10)0.0220 (11)0.0196 (10)0.0040 (8)0.0054 (8)0.0014 (8)
O10.0295 (10)0.0591 (15)0.0620 (15)0.0089 (10)0.0154 (10)0.0151 (12)
O20.0475 (11)0.0327 (12)0.0462 (12)0.0009 (9)0.0172 (9)0.0131 (9)
O30.100 (2)0.061 (2)0.118 (3)0.0244 (18)0.025 (2)0.022 (2)
P10.0249 (3)0.0202 (3)0.0203 (3)0.0005 (2)0.0015 (2)0.0000 (2)
Cl10.0563 (4)0.0254 (4)0.0495 (4)0.0139 (3)0.0055 (3)0.0033 (3)
Au10.03095 (6)0.01863 (6)0.02458 (6)0.00191 (4)0.00082 (4)0.00061 (3)
Geometric parameters (Å, º) top
C1—N11.460 (3)C24—O21.365 (3)
C1—H1A0.9600C24—C251.393 (4)
C1—H1B0.9600C25—C261.378 (4)
C1—H1C0.9600C25—H250.9300
C11—C161.382 (4)C26—H260.9300
C11—C121.395 (4)C27—O21.430 (4)
C11—P11.803 (2)C27—H27A0.9600
C12—C131.376 (4)C27—H27B0.9600
C12—H120.9300C27—H27C0.9600
C13—C141.388 (4)C31—O31.371 (6)
C13—H130.9300C31—C321.495 (7)
C14—O11.362 (3)C31—H31A0.9700
C14—C151.378 (4)C31—H31B0.9700
C15—C161.391 (3)C32—C331.449 (9)
C15—H150.9300C32—H32A0.9700
C16—H160.9300C32—H32B0.9700
C17—O11.419 (4)C33—C341.361 (9)
C17—H17A0.9600C33—H33A0.9700
C17—H17B0.9600C33—H33B0.9700
C17—H17C0.9600C34—O31.366 (7)
C21—C221.382 (4)C34—H34A0.9700
C21—C261.391 (4)C34—H34B0.9700
C21—P11.807 (2)N1—N1i1.417 (4)
C22—C231.396 (4)N1—P11.678 (2)
C22—H220.9300P1—Au12.2238 (11)
C23—C241.380 (4)Cl1—Au12.2905 (11)
C23—H230.9300Au1—Au1i3.1222 (17)
N1—C1—H1A109.5C21—C26—H26119.6
N1—C1—H1B109.5O2—C27—H27A109.5
H1A—C1—H1B109.5O2—C27—H27B109.5
N1—C1—H1C109.5H27A—C27—H27B109.5
H1A—C1—H1C109.5O2—C27—H27C109.5
H1B—C1—H1C109.5H27A—C27—H27C109.5
C16—C11—C12118.8 (2)H27B—C27—H27C109.5
C16—C11—P1119.45 (19)O3—C31—C32105.7 (5)
C12—C11—P1121.61 (19)O3—C31—H31A110.6
C13—C12—C11120.4 (3)C32—C31—H31A110.6
C13—C12—H12119.8O3—C31—H31B110.6
C11—C12—H12119.8C32—C31—H31B110.6
C12—C13—C14120.1 (3)H31A—C31—H31B108.7
C12—C13—H13120.0C33—C32—C31105.2 (5)
C14—C13—H13120.0C33—C32—H32A110.7
O1—C14—C15124.4 (3)C31—C32—H32A110.7
O1—C14—C13115.2 (3)C33—C32—H32B110.7
C15—C14—C13120.4 (2)C31—C32—H32B110.7
C14—C15—C16119.1 (3)H32A—C32—H32B108.8
C14—C15—H15120.4C34—C33—C32104.1 (6)
C16—C15—H15120.4C34—C33—H33A110.9
C11—C16—C15121.2 (2)C32—C33—H33A110.9
C11—C16—H16119.4C34—C33—H33B110.9
C15—C16—H16119.4C32—C33—H33B110.9
O1—C17—H17A109.5H33A—C33—H33B108.9
O1—C17—H17B109.5C33—C34—O3113.0 (6)
H17A—C17—H17B109.5C33—C34—H34A109.0
O1—C17—H17C109.5O3—C34—H34A109.0
H17A—C17—H17C109.5C33—C34—H34B109.0
H17B—C17—H17C109.5O3—C34—H34B109.0
C22—C21—C26118.8 (2)H34A—C34—H34B107.8
C22—C21—P1119.4 (2)N1i—N1—C1116.05 (18)
C26—C21—P1121.73 (19)N1i—N1—P1115.65 (17)
C21—C22—C23121.0 (3)C1—N1—P1126.33 (17)
C21—C22—H22119.5C14—O1—C17117.6 (3)
C23—C22—H22119.5C24—O2—C27117.0 (3)
C24—C23—C22119.2 (3)C34—O3—C31105.4 (5)
C24—C23—H23120.4N1—P1—C11102.26 (11)
C22—C23—H23120.4N1—P1—C21109.71 (12)
O2—C24—C23124.8 (3)C11—P1—C21104.57 (11)
O2—C24—C25114.8 (3)N1—P1—Au1110.83 (8)
C23—C24—C25120.4 (2)C11—P1—Au1116.63 (9)
C26—C25—C24119.6 (3)C21—P1—Au1112.20 (9)
C26—C25—H25120.2P1—Au1—Cl1175.68 (3)
C24—C25—H25120.2P1—Au1—Au1i88.241 (19)
C25—C26—C21120.9 (2)Cl1—Au1—Au1i94.74 (2)
C25—C26—H26119.5
C16—C11—C12—C131.9 (4)C13—C14—O1—C17170.4 (3)
P1—C11—C12—C13174.3 (2)C23—C24—O2—C275.4 (5)
C11—C12—C13—C141.0 (5)C25—C24—O2—C27174.8 (3)
C12—C13—C14—O1178.9 (3)C33—C34—O3—C3126.4 (12)
C12—C13—C14—C150.6 (5)C32—C31—O3—C3423.6 (9)
O1—C14—C15—C16178.3 (3)N1i—N1—P1—C11165.00 (15)
C13—C14—C15—C161.3 (5)C1—N1—P1—C1131.7 (3)
C12—C11—C16—C151.3 (4)N1i—N1—P1—C2184.44 (16)
P1—C11—C16—C15175.0 (2)C1—N1—P1—C2178.9 (3)
C14—C15—C16—C110.3 (4)N1i—N1—P1—Au140.01 (16)
C26—C21—C22—C231.4 (4)C1—N1—P1—Au1156.7 (2)
P1—C21—C22—C23175.7 (2)C16—C11—P1—N176.7 (2)
C21—C22—C23—C241.3 (4)C12—C11—P1—N199.5 (2)
C22—C23—C24—O2179.7 (3)C16—C11—P1—C21168.9 (2)
C22—C23—C24—C250.1 (4)C12—C11—P1—C2114.9 (3)
O2—C24—C25—C26179.3 (2)C16—C11—P1—Au144.4 (2)
C23—C24—C25—C260.9 (4)C12—C11—P1—Au1139.4 (2)
C24—C25—C26—C210.7 (4)C22—C21—P1—N1162.70 (19)
C22—C21—C26—C250.5 (4)C26—C21—P1—N120.2 (2)
P1—C21—C26—C25176.63 (19)C22—C21—P1—C1188.3 (2)
O3—C31—C32—C3314.1 (8)C26—C21—P1—C1188.8 (2)
C31—C32—C33—C341.1 (10)C22—C21—P1—Au139.0 (2)
C32—C33—C34—O316.7 (13)C26—C21—P1—Au1143.88 (19)
C15—C14—O1—C179.2 (5)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Au2Cl2(C30H34N2O4P2)]·2C4H8O
Mr1157.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)23.208 (5), 9.080 (5), 20.220 (5)
β (°) 92.414 (5)
V3)4257 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.13
Crystal size (mm)0.58 × 0.45 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.044, 0.567
No. of measured, independent and
observed [I > 2σ(I)] reflections
33198, 5264, 4679
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.04
No. of reflections5264
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.80

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors would like to thank Project AuTEK (Mintek and Harmony) for financial support and the University of the Witwatersrand for the use of their facilities.

References

First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHolleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry, p. 1248. San Diego: Academic Press.  Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Caddy, J. (2010a). Acta Cryst. E66, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2010b). Acta Cryst. E66, m710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2011a). Acta Cryst. E67, m42.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2011b). Acta Cryst. E67, m155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355–1357.  CrossRef CAS Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483–5488.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlawin, A. M. Z., Wainwright, M. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp. 513–519.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds