metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium tri-μ-phenolato-bis­­[tri­carbonyl­manganate(I)]

aDepartment of Chemistry, Loyola University Maryland, 4501 N. Charles Street, Baltimore, MD 21210-2699, USA, and bDepartment of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: tmcneese@loyola.edu

(Received 15 July 2011; accepted 19 July 2011; online 30 July 2011)

The title compound, (C8H20N)[Mn2(C6H5O)3(CO)6], was synthesized from [Mn(CO)3(CH3CN)3]BF4 and (C8H20N)(OC6H5). The binuclear anion exhibits a pseudo-threefold symmetry and contains two six-coordinate Mn atoms. Each metal atom is coordinated by three facially oriented CO ligands and three doubly-bridging phenolate ligands. The average O—Mn—O bond angle is 74.9 (7)° in the Mn2O3 metal–phenolate dimeric core, yielding a distorted octa­hedron for each metal.

Related literature

For the synthesis of the starting materials, see: Riemann & Singleton (1973[Riemann, R. H. & Singleton, E. (1973). J. Organomet. Chem. 59, C24-C26.]); McNeese et al. (1985[McNeese, T. J., Mueller, T. E., Wierda, D. A., Darensbourg, D. J. & DeLord, T. J. (1985). Inorg. Chem. 24, 3465-3468.]). For related metal phenolate complexes, see: Darensbourg et al. (1988[Darensbourg, D. J., Sanchez, K. M. & Reibenspies, J. H. (1988). Inorg. Chem. 27, 3269-3270.], 1989[Darensbourg, D. J., Sanchez, K. M., Reibenspies, J. H. & Rheingold, A. L. (1989). J. Am. Chem. Soc. 111, 7094-7103.]); McNeese et al. (1985[McNeese, T. J., Mueller, T. E., Wierda, D. A., Darensbourg, D. J. & DeLord, T. J. (1985). Inorg. Chem. 24, 3465-3468.]); Lee et al. (1995[Lee, S.-G., Kim, J.-A., Chung, Y. K., Yoon, T.-S., Kim, N. & Whanchul, S. (1995). Organometallics, 14, 1023-1029.]). For analogous tungsten and rhenium dimers, see: Darensbourg et al. (1988[Darensbourg, D. J., Sanchez, K. M. & Reibenspies, J. H. (1988). Inorg. Chem. 27, 3269-3270.]); Beringhelli et al. (1985[Beringhelli, T., Gianfranco, C., Giuseppe, A., Sironi, A. & Freni, M. (1985). J. Chem. Soc. Dalton Trans. pp. 1507-1512.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Mn2(C6H5O)3(CO)6]

  • Mr = 687.49

  • Orthorhombic, P n a 21

  • a = 18.6831 (4) Å

  • b = 9.2037 (2) Å

  • c = 18.5999 (4) Å

  • V = 3198.32 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.88 mm−1

  • T = 100 K

  • 0.45 × 0.43 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.148, Tmax = 0.229

  • 30613 measured reflections

  • 4817 independent reflections

  • 4660 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.07

  • 4817 reflections

  • 402 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1874 Friedel pairs

  • Flack parameter: 0.051 (5)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The phenolate ligand, OC6H5-, exhibits a variety of bonding modes in organometallic carbonyl compounds. Examples include mono- and polynuclear complexes where the ligand is bonded by its oxygen atom to one or more metals in a terminal (Darensbourg et al., 1989), doubly- (Darensbourg et al., 1988) and triply- (McNeese, et al., 1985) bridging fashion, and through its aromatic ring as an oxocyclohexadienyl ligand (Lee et al., 1995).

The title compound, (Et4N)[(CO)3Mn(µ-OC6H5)3Mn(CO)3] (1), was synthesized by displacement of labile acetonitrile ligands of the precursor, [Mn(CO)3(CH3CN)3]BF4 (Riemann & Singleton, 1973), by phenoxide ions of (Et4N)(OC6H5) (McNeese et al., 1985). The doubly-bridging phenolate ligands of the dimer are basic, reaction of (1) in CH3CN with HBF4 re-forms the Mn-containing starting material and C6H5OH.

The bimetallic compound crystallizes in the orthorhombic space group Pna2(1), and exhibits a striking pseudo threefold symmetry. The structure presents bond lengths and angles that are comparable to analogous Re (Beringhelli et al., 1985) and W (Darensbourg et al., 1988) dimers. The geometry for each Mn atom in the organometallic anion of (1) is a distorted octahedron (Figure 1), with average O—Mn—O angles in the Mn2O3 metal-phenolate group of 75.12 (7)°. Each Mn atom has a noble-gas configuration and a nonbonding metal distance of 2.8759 (5) Å. Figure 2 illustrates the packing diagram for the molecular structure of the title compound.

Related literature top

For the synthesis of the starting materials, see: Riemann & Singleton (1973); McNeese et al. (1985). For related metal phenolate complexes, see: Darensbourg et al. (1988, 1989); McNeese et al. (1985); Lee et al. (1995). For analogous tungsten and rhenium dimers, see: Darensbourg et al. (1988); Beringhelli et al. (1985).

Experimental top

Solid (Et4N)(OC6H5) (500 mg, 2.24 mmol) (McNeese et al., 1985) was added with a funnel to a 100-ml Schlenk tube containing a 50-ml CH3CN solution of [Mn(CO)3(CH3CN)3]BF4 (521 mg, 1.49 mmol) (Riemann & Singleton, 1973). The orange-colored solution was stirred under argon at room temperature for 18 h and evaporated to dryness. THF (25 ml) was added to the solid to dissolve the desired compound. The reaction mixture was filtered under vacuum to separate insoluble Et4NBF4 and the resulting solution was evaporated. The orange-colored product, (Et4N)[(CO)3Mn(µ-OC6H5)3Mn(CO)3], was crystallized from THF/cyclohexane. Yield: 359 mg (69%). IR (υ(CO), CH3CN) 2013 (s), 1912 (s) cm-1; 1H NMR (CD3CN): cation, δ1.25 (12H,t, –CH3), 3.25 (8H, q, –CH2–); anion, δ 6.75–7.45 (15H, m, OC6H5). Elemental analysis, calcd for C32H35Mn2NO9: C, 55.90; H, 5.14. Found: C, 55.67; H, 5.28.

Refinement top

All hydrogen atoms were placed in theoretical positions (C—H: 0.95–0.99 Å) riding on the atoms to which they are attached.

Displacement factors of the atoms attached to Mn were restarined via DELU intructions in SHELXL.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of the organometallic anion in (1). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (1) viewed down the b axis.
Tetraethylammonium tri-µ-phenolato-bis[tricarbonylmanganate(I)] top
Crystal data top
(C8H20N)[Mn2(C6H5O)3(CO)6]F(000) = 1424
Mr = 687.49Dx = 1.428 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 9989 reflections
a = 18.6831 (4) Åθ = 3.4–68.1°
b = 9.2037 (2) ŵ = 6.88 mm1
c = 18.5999 (4) ÅT = 100 K
V = 3198.32 (12) Å3Block, brown
Z = 40.45 × 0.43 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4817 independent reflections
Radiation source: fine-focus sealed tube4660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and ψ scansθmax = 67.0°, θmin = 4.7°
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
h = 2222
Tmin = 0.148, Tmax = 0.229k = 1010
30613 measured reflectionsl = 1922
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0591P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4817 reflectionsΔρmax = 0.79 e Å3
402 parametersΔρmin = 0.57 e Å3
19 restraintsAbsolute structure: Flack (1983), 1874 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.051 (5)
Crystal data top
(C8H20N)[Mn2(C6H5O)3(CO)6]V = 3198.32 (12) Å3
Mr = 687.49Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 18.6831 (4) ŵ = 6.88 mm1
b = 9.2037 (2) ÅT = 100 K
c = 18.5999 (4) Å0.45 × 0.43 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4817 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
4660 reflections with I > 2σ(I)
Tmin = 0.148, Tmax = 0.229Rint = 0.059
30613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.79 e Å3
S = 1.07Δρmin = 0.57 e Å3
4817 reflectionsAbsolute structure: Flack (1983), 1874 Friedel pairs
402 parametersAbsolute structure parameter: 0.051 (5)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.942524 (18)0.23445 (4)0.69042 (3)0.00987 (11)
Mn20.864233 (19)0.49426 (4)0.72511 (3)0.00854 (11)
O10.88111 (12)0.0575 (2)0.71027 (13)0.0277 (5)
O21.00084 (11)0.1572 (2)0.54831 (12)0.0255 (5)
O31.07657 (10)0.1197 (2)0.75028 (13)0.0253 (5)
O40.71971 (11)0.5205 (2)0.78704 (13)0.0246 (5)
O50.82718 (11)0.7131 (2)0.61509 (12)0.0197 (4)
O60.90503 (11)0.7115 (2)0.83376 (12)0.0194 (4)
O70.96310 (8)0.45028 (19)0.68333 (11)0.0120 (4)
O80.89854 (9)0.3187 (2)0.78004 (11)0.0139 (4)
O90.85015 (9)0.32527 (19)0.65656 (11)0.0118 (4)
C10.90466 (14)0.0552 (3)0.70182 (17)0.0151 (5)
C20.97751 (12)0.1871 (3)0.60351 (16)0.0134 (5)
C31.02446 (13)0.1687 (3)0.72812 (18)0.0160 (5)
C40.77549 (14)0.5058 (3)0.76187 (18)0.0133 (5)
C50.84219 (13)0.6313 (3)0.65873 (15)0.0114 (5)
C60.89061 (13)0.6281 (3)0.79007 (15)0.0110 (5)
C71.02389 (13)0.5276 (3)0.67916 (14)0.0101 (5)
C81.08961 (14)0.4598 (3)0.66590 (16)0.0156 (6)
H81.09150.35750.65930.019*
C91.15232 (15)0.5415 (4)0.66233 (17)0.0191 (6)
H91.19650.49390.65310.023*
C101.15143 (15)0.6886 (3)0.67177 (17)0.0212 (6)
H101.19470.74280.67080.025*
C111.08608 (16)0.7580 (3)0.68280 (19)0.0196 (6)
H111.08470.86060.68810.024*
C121.02274 (13)0.6785 (3)0.68610 (16)0.0141 (5)
H120.97850.72730.69310.017*
C130.89238 (14)0.2703 (3)0.84769 (16)0.0134 (6)
C140.92658 (15)0.1421 (3)0.86978 (17)0.0186 (6)
H140.95430.08840.83610.022*
C150.92062 (16)0.0925 (3)0.93968 (18)0.0232 (6)
H150.94410.00520.95320.028*
C160.88101 (18)0.1679 (3)0.99032 (18)0.0244 (7)
H160.87720.13311.03820.029*
C170.84700 (17)0.2953 (3)0.96968 (17)0.0209 (6)
H170.81990.34871.00390.025*
C180.85229 (14)0.3455 (3)0.89947 (16)0.0156 (6)
H180.82830.43250.88620.019*
C190.79925 (13)0.2836 (3)0.60953 (16)0.0104 (5)
C200.81015 (12)0.1642 (3)0.56366 (16)0.0137 (6)
H200.85350.11060.56660.016*
C210.75808 (14)0.1237 (3)0.51403 (16)0.0176 (6)
H210.76660.04310.48330.021*
C220.69416 (14)0.1987 (4)0.50854 (18)0.0193 (6)
H220.65880.17080.47450.023*
C230.68308 (13)0.3167 (3)0.55445 (17)0.0175 (6)
H230.63930.36890.55180.021*
C240.73455 (14)0.3590 (3)0.60368 (16)0.0143 (5)
H240.72580.44040.63390.017*
N10.62259 (13)0.0037 (2)0.90791 (16)0.0168 (5)
C250.70244 (15)0.0258 (4)0.91741 (19)0.0243 (7)
H25A0.72240.04900.95000.029*
H25B0.70820.12120.94130.029*
C260.74587 (17)0.0265 (4)0.8490 (3)0.0383 (9)
H26A0.74380.06980.82650.057*
H26B0.72630.09900.81580.057*
H26C0.79570.05060.86010.057*
C270.58925 (14)0.1050 (3)0.85663 (16)0.0168 (6)
H27A0.53800.08030.85060.020*
H27B0.61250.09450.80910.020*
C280.59471 (18)0.2619 (3)0.87963 (19)0.0251 (7)
H28A0.56850.27570.92470.038*
H28B0.64510.28750.88680.038*
H28C0.57410.32430.84230.038*
C290.58983 (18)0.0064 (3)0.98216 (18)0.0214 (7)
H29A0.60060.10361.00230.026*
H29B0.61310.06661.01350.026*
C300.5099 (2)0.0171 (4)0.9847 (2)0.0307 (8)
H30A0.48620.05370.95340.046*
H30B0.49880.11570.96810.046*
H30C0.49290.00481.03410.046*
C310.61045 (16)0.1516 (3)0.87507 (17)0.0205 (6)
H31A0.55850.16400.86690.025*
H31B0.63420.15390.82750.025*
C320.6371 (2)0.2799 (4)0.9187 (2)0.0340 (9)
H32A0.68880.27070.92620.051*
H32B0.61270.28170.96530.051*
H32C0.62710.37020.89270.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00445 (18)0.0091 (2)0.0160 (2)0.00351 (13)0.00178 (18)0.00336 (17)
Mn20.00319 (18)0.0078 (2)0.0146 (2)0.00217 (13)0.00009 (17)0.00081 (15)
O10.0346 (11)0.0128 (8)0.0358 (15)0.0038 (8)0.0064 (10)0.0000 (9)
O20.0132 (9)0.0400 (13)0.0232 (9)0.0042 (9)0.0009 (8)0.0140 (9)
O30.0156 (8)0.0239 (11)0.0364 (13)0.0116 (7)0.0130 (9)0.0079 (9)
O40.0079 (8)0.0358 (13)0.0300 (14)0.0031 (8)0.0050 (8)0.0003 (9)
O50.0188 (10)0.0174 (10)0.0230 (11)0.0053 (8)0.0002 (9)0.0044 (7)
O60.0192 (9)0.0179 (10)0.0211 (11)0.0012 (8)0.0008 (9)0.0062 (7)
O70.0040 (7)0.0110 (9)0.0209 (11)0.0000 (6)0.0017 (8)0.0027 (8)
O80.0139 (8)0.0117 (9)0.0160 (10)0.0058 (7)0.0018 (8)0.0004 (7)
O90.0052 (8)0.0104 (9)0.0198 (11)0.0020 (7)0.0046 (7)0.0042 (7)
C10.0124 (12)0.0101 (9)0.0227 (15)0.0045 (8)0.0028 (11)0.0053 (11)
C20.0025 (11)0.0164 (13)0.0213 (11)0.0031 (10)0.0014 (10)0.0057 (11)
C30.0102 (10)0.0131 (13)0.0249 (15)0.0047 (9)0.0060 (10)0.0064 (11)
C40.0063 (9)0.0131 (14)0.0203 (16)0.0024 (9)0.0003 (10)0.0008 (10)
C50.0054 (11)0.0101 (12)0.0188 (13)0.0024 (9)0.0024 (10)0.0003 (8)
C60.0055 (10)0.0106 (13)0.0170 (13)0.0016 (9)0.0002 (10)0.0003 (8)
C70.0066 (11)0.0168 (12)0.0068 (13)0.0014 (10)0.0004 (10)0.0002 (10)
C80.0110 (13)0.0190 (14)0.0167 (15)0.0005 (11)0.0013 (11)0.0035 (11)
C90.0068 (12)0.0344 (17)0.0160 (15)0.0012 (12)0.0035 (11)0.0031 (13)
C100.0102 (11)0.0330 (17)0.0204 (16)0.0083 (12)0.0036 (12)0.0015 (12)
C110.0194 (14)0.0174 (14)0.0221 (18)0.0047 (10)0.0044 (14)0.0019 (11)
C120.0075 (11)0.0183 (13)0.0165 (14)0.0010 (9)0.0039 (11)0.0007 (11)
C130.0109 (13)0.0122 (14)0.0169 (15)0.0022 (10)0.0018 (12)0.0015 (10)
C140.0197 (13)0.0147 (14)0.0214 (16)0.0042 (11)0.0005 (12)0.0009 (11)
C150.0307 (15)0.0172 (15)0.0216 (16)0.0063 (12)0.0041 (14)0.0053 (12)
C160.0328 (16)0.0238 (17)0.0168 (15)0.0005 (13)0.0025 (14)0.0069 (12)
C170.0222 (14)0.0193 (15)0.0212 (16)0.0007 (12)0.0021 (13)0.0026 (12)
C180.0130 (12)0.0158 (14)0.0179 (15)0.0036 (10)0.0014 (11)0.0000 (11)
C190.0029 (11)0.0133 (13)0.0150 (14)0.0030 (9)0.0007 (10)0.0032 (10)
C200.0062 (11)0.0155 (14)0.0195 (15)0.0023 (9)0.0007 (11)0.0004 (11)
C210.0153 (13)0.0180 (14)0.0195 (15)0.0073 (11)0.0003 (12)0.0015 (11)
C220.0105 (13)0.0271 (16)0.0203 (16)0.0091 (11)0.0057 (11)0.0040 (12)
C230.0042 (11)0.0205 (15)0.0277 (18)0.0022 (10)0.0043 (11)0.0078 (12)
C240.0075 (11)0.0140 (13)0.0213 (15)0.0006 (10)0.0011 (11)0.0016 (11)
N10.0099 (11)0.0202 (14)0.0203 (14)0.0005 (9)0.0044 (11)0.0018 (9)
C250.0109 (14)0.0270 (16)0.035 (2)0.0028 (12)0.0101 (14)0.0021 (13)
C260.0109 (15)0.055 (2)0.049 (3)0.0007 (14)0.0023 (16)0.0094 (18)
C270.0106 (12)0.0254 (16)0.0145 (15)0.0006 (11)0.0020 (11)0.0018 (11)
C280.0275 (16)0.0240 (17)0.0239 (18)0.0002 (12)0.0005 (15)0.0023 (12)
C290.0290 (17)0.0224 (17)0.0129 (16)0.0028 (12)0.0032 (14)0.0020 (10)
C300.034 (2)0.035 (2)0.0235 (19)0.0127 (15)0.0101 (16)0.0052 (13)
C310.0185 (13)0.0220 (16)0.0210 (16)0.0006 (11)0.0055 (13)0.0064 (12)
C320.040 (2)0.0233 (18)0.039 (2)0.0032 (14)0.0147 (17)0.0053 (15)
Geometric parameters (Å, º) top
Mn1—C31.789 (3)C17—H170.9500
Mn1—C21.797 (3)C18—H180.9500
Mn1—C11.807 (3)C19—C241.398 (4)
Mn1—O82.014 (2)C19—C201.406 (4)
Mn1—O92.0184 (18)C20—C211.392 (4)
Mn1—O72.0276 (18)C20—H200.9500
Mn1—Mn22.8765 (5)C21—C221.383 (4)
Mn2—C61.795 (3)C21—H210.9500
Mn2—C41.796 (3)C22—C231.397 (5)
Mn2—C51.812 (3)C22—H220.9500
Mn2—O82.017 (2)C23—C241.384 (4)
Mn2—O92.0284 (19)C23—H230.9500
Mn2—O72.0444 (17)C24—H240.9500
O1—C11.138 (4)N1—C311.509 (4)
O2—C21.149 (4)N1—C291.514 (4)
O3—C31.149 (3)N1—C271.516 (4)
O4—C41.151 (4)N1—C251.526 (4)
O5—C51.142 (3)C25—C261.510 (6)
O6—C61.150 (3)C25—H25A0.9900
O7—C71.342 (3)C25—H25B0.9900
O8—C131.340 (4)C26—H26A0.9800
O9—C191.348 (3)C26—H26B0.9800
C7—C121.395 (4)C26—H26C0.9800
C7—C81.399 (4)C27—C281.509 (4)
C8—C91.394 (4)C27—H27A0.9900
C8—H80.9500C27—H27B0.9900
C9—C101.365 (5)C28—H28A0.9800
C9—H90.9500C28—H28B0.9800
C10—C111.393 (4)C28—H28C0.9800
C10—H100.9500C29—C301.509 (5)
C11—C121.393 (4)C29—H29A0.9900
C11—H110.9500C29—H29B0.9900
C12—H120.9500C30—H30A0.9800
C13—C141.404 (4)C30—H30B0.9800
C13—C181.403 (4)C30—H30C0.9800
C14—C151.382 (4)C31—C321.517 (5)
C14—H140.9500C31—H31A0.9900
C15—C161.384 (5)C31—H31B0.9900
C15—H150.9500C32—H32A0.9800
C16—C171.388 (5)C32—H32B0.9800
C16—H160.9500C32—H32C0.9800
C17—C181.389 (4)
C3—Mn1—C287.67 (13)C16—C15—H15119.4
C3—Mn1—C188.86 (12)C15—C16—C17118.7 (3)
C2—Mn1—C191.51 (13)C15—C16—H16120.7
C3—Mn1—O898.90 (12)C17—C16—H16120.7
C2—Mn1—O8170.52 (11)C18—C17—C16120.6 (3)
C1—Mn1—O895.42 (11)C18—C17—H17119.7
C3—Mn1—O9173.68 (11)C16—C17—H17119.7
C2—Mn1—O997.52 (10)C17—C18—C13121.3 (3)
C1—Mn1—O994.59 (10)C17—C18—H18119.3
O8—Mn1—O975.52 (8)C13—C18—H18119.3
C3—Mn1—O7101.23 (10)O9—C19—C24121.3 (2)
C2—Mn1—O796.34 (11)O9—C19—C20120.9 (2)
C1—Mn1—O7167.43 (9)C24—C19—C20117.8 (2)
O8—Mn1—O775.76 (8)C21—C20—C19120.7 (2)
O9—Mn1—O774.70 (7)C21—C20—H20119.7
C3—Mn1—Mn2128.92 (9)C19—C20—H20119.7
C2—Mn1—Mn2126.05 (9)C22—C21—C20121.3 (3)
C1—Mn1—Mn2122.23 (8)C22—C21—H21119.4
O8—Mn1—Mn244.50 (6)C20—C21—H21119.4
O9—Mn1—Mn244.84 (5)C21—C22—C23118.1 (3)
O7—Mn1—Mn245.30 (5)C21—C22—H22121.0
C6—Mn2—C487.53 (12)C23—C22—H22121.0
C6—Mn2—C592.48 (12)C24—C23—C22121.4 (2)
C4—Mn2—C590.49 (12)C24—C23—H23119.3
C6—Mn2—O896.99 (10)C22—C23—H23119.3
C4—Mn2—O898.50 (10)C23—C24—C19120.8 (3)
C5—Mn2—O8167.19 (10)C23—C24—H24119.6
C6—Mn2—O9170.16 (9)C19—C24—H24119.6
C4—Mn2—O999.48 (10)C31—N1—C29111.4 (2)
C5—Mn2—O994.35 (11)C31—N1—C27106.2 (2)
O8—Mn2—O975.24 (8)C29—N1—C27111.5 (2)
C6—Mn2—O798.26 (10)C31—N1—C25110.7 (2)
C4—Mn2—O7171.95 (10)C29—N1—C25106.2 (2)
C5—Mn2—O794.83 (10)C27—N1—C25110.9 (2)
O8—Mn2—O775.33 (7)C26—C25—N1115.4 (3)
O9—Mn2—O774.12 (7)C26—C25—H25A108.4
C6—Mn2—Mn1125.60 (8)N1—C25—H25A108.4
C4—Mn2—Mn1127.13 (8)C26—C25—H25B108.4
C5—Mn2—Mn1122.77 (9)N1—C25—H25B108.4
O8—Mn2—Mn144.42 (6)H25A—C25—H25B107.5
O9—Mn2—Mn144.56 (5)C25—C26—H26A109.5
O7—Mn2—Mn144.82 (5)C25—C26—H26B109.5
C7—O7—Mn1133.11 (15)H26A—C26—H26B109.5
C7—O7—Mn2132.96 (16)C25—C26—H26C109.5
Mn1—O7—Mn289.89 (7)H26A—C26—H26C109.5
C13—O8—Mn1133.21 (17)H26B—C26—H26C109.5
C13—O8—Mn2135.63 (17)C28—C27—N1115.2 (2)
Mn1—O8—Mn291.07 (9)C28—C27—H27A108.5
C19—O9—Mn1133.46 (16)N1—C27—H27A108.5
C19—O9—Mn2135.87 (16)C28—C27—H27B108.5
Mn1—O9—Mn290.60 (8)N1—C27—H27B108.5
O1—C1—Mn1178.8 (3)H27A—C27—H27B107.5
O2—C2—Mn1179.0 (2)C27—C28—H28A109.5
O3—C3—Mn1176.3 (2)C27—C28—H28B109.5
O4—C4—Mn2176.2 (3)H28A—C28—H28B109.5
O5—C5—Mn2177.1 (2)C27—C28—H28C109.5
O6—C6—Mn2176.8 (2)H28A—C28—H28C109.5
O7—C7—C12120.6 (2)H28B—C28—H28C109.5
O7—C7—C8121.1 (2)C30—C29—N1114.8 (3)
C12—C7—C8118.3 (2)C30—C29—H29A108.6
C9—C8—C7120.4 (3)N1—C29—H29A108.6
C9—C8—H8119.8C30—C29—H29B108.6
C7—C8—H8119.8N1—C29—H29B108.6
C10—C9—C8121.2 (3)H29A—C29—H29B107.5
C10—C9—H9119.4C29—C30—H30A109.5
C8—C9—H9119.4C29—C30—H30B109.5
C9—C10—C11119.0 (3)H30A—C30—H30B109.5
C9—C10—H10120.5C29—C30—H30C109.5
C11—C10—H10120.5H30A—C30—H30C109.5
C12—C11—C10120.7 (3)H30B—C30—H30C109.5
C12—C11—H11119.7N1—C31—C32115.9 (3)
C10—C11—H11119.7N1—C31—H31A108.3
C11—C12—C7120.4 (2)C32—C31—H31A108.3
C11—C12—H12119.8N1—C31—H31B108.3
C7—C12—H12119.8C32—C31—H31B108.3
O8—C13—C14121.0 (3)H31A—C31—H31B107.4
O8—C13—C18121.8 (2)C31—C32—H32A109.5
C14—C13—C18117.2 (3)C31—C32—H32B109.5
C15—C14—C13121.1 (3)H32A—C32—H32B109.5
C15—C14—H14119.5C31—C32—H32C109.5
C13—C14—H14119.5H32A—C32—H32C109.5
C14—C15—C16121.2 (3)H32B—C32—H32C109.5
C14—C15—H15119.4
C3—Mn1—Mn2—C61.44 (17)C5—Mn2—O8—Mn11.9 (5)
C2—Mn1—Mn2—C6120.10 (14)O9—Mn2—O8—Mn138.38 (7)
C1—Mn1—Mn2—C6120.06 (16)O7—Mn2—O8—Mn138.70 (7)
O8—Mn1—Mn2—C658.90 (13)C2—Mn1—O9—C1947.5 (3)
O9—Mn1—Mn2—C6179.94 (14)C1—Mn1—O9—C1944.6 (3)
O7—Mn1—Mn2—C661.99 (13)O8—Mn1—O9—C19139.1 (2)
C3—Mn1—Mn2—C4116.94 (19)O7—Mn1—O9—C19142.1 (2)
C2—Mn1—Mn2—C4121.51 (16)Mn2—Mn1—O9—C19177.3 (3)
C1—Mn1—Mn2—C41.68 (18)C2—Mn1—O9—Mn2135.16 (10)
O8—Mn1—Mn2—C459.49 (15)C1—Mn1—O9—Mn2132.70 (11)
O9—Mn1—Mn2—C461.67 (15)O8—Mn1—O9—Mn238.28 (7)
O7—Mn1—Mn2—C4179.62 (16)O7—Mn1—O9—Mn240.61 (8)
C3—Mn1—Mn2—C5123.05 (16)C4—Mn2—O9—C1942.6 (3)
C2—Mn1—Mn2—C51.50 (14)C5—Mn2—O9—C1948.6 (3)
C1—Mn1—Mn2—C5118.33 (15)O8—Mn2—O9—C19138.9 (3)
O8—Mn1—Mn2—C5179.49 (12)O7—Mn2—O9—C19142.4 (3)
O9—Mn1—Mn2—C558.33 (13)Mn1—Mn2—O9—C19177.2 (3)
O7—Mn1—Mn2—C559.62 (13)C4—Mn2—O9—Mn1134.64 (11)
C3—Mn1—Mn2—O857.46 (15)C5—Mn2—O9—Mn1134.13 (9)
C2—Mn1—Mn2—O8179.00 (12)O8—Mn2—O9—Mn138.27 (7)
C1—Mn1—Mn2—O861.16 (14)O7—Mn2—O9—Mn140.34 (7)
O9—Mn1—Mn2—O8121.16 (11)Mn1—O7—C7—C12169.8 (2)
O7—Mn1—Mn2—O8120.89 (11)Mn2—O7—C7—C1219.6 (4)
C3—Mn1—Mn2—O9178.62 (16)Mn1—O7—C7—C811.9 (4)
C2—Mn1—Mn2—O959.84 (12)Mn2—O7—C7—C8162.1 (2)
C1—Mn1—Mn2—O960.00 (14)O7—C7—C8—C9179.5 (3)
O8—Mn1—Mn2—O9121.16 (11)C12—C7—C8—C92.2 (4)
O7—Mn1—Mn2—O9117.95 (12)C7—C8—C9—C100.2 (5)
C3—Mn1—Mn2—O763.43 (15)C8—C9—C10—C112.1 (5)
C2—Mn1—Mn2—O758.11 (13)C9—C10—C11—C121.7 (5)
C1—Mn1—Mn2—O7177.95 (15)C10—C11—C12—C70.7 (5)
O8—Mn1—Mn2—O7120.89 (11)O7—C7—C12—C11179.0 (3)
O9—Mn1—Mn2—O7117.95 (12)C8—C7—C12—C112.6 (4)
C3—Mn1—O7—C723.9 (3)Mn1—O8—C13—C147.0 (4)
C2—Mn1—O7—C765.0 (2)Mn2—O8—C13—C14177.19 (19)
C1—Mn1—O7—C7166.7 (5)Mn1—O8—C13—C18173.50 (19)
O8—Mn1—O7—C7120.3 (2)Mn2—O8—C13—C182.3 (4)
O9—Mn1—O7—C7161.1 (2)O8—C13—C14—C15179.6 (3)
Mn2—Mn1—O7—C7158.7 (3)C18—C13—C14—C150.1 (4)
C3—Mn1—O7—Mn2134.81 (11)C13—C14—C15—C160.3 (5)
C2—Mn1—O7—Mn2136.31 (10)C14—C15—C16—C170.0 (5)
C1—Mn1—O7—Mn28.0 (6)C15—C16—C17—C180.4 (5)
O8—Mn1—O7—Mn238.36 (8)C16—C17—C18—C130.6 (5)
O9—Mn1—O7—Mn240.22 (8)O8—C13—C18—C17179.2 (3)
C6—Mn2—O7—C725.2 (3)C14—C13—C18—C170.3 (4)
C5—Mn2—O7—C768.0 (2)Mn1—O9—C19—C24170.61 (19)
O8—Mn2—O7—C7120.3 (2)Mn2—O9—C19—C245.6 (4)
O9—Mn2—O7—C7161.2 (2)Mn1—O9—C19—C2010.7 (4)
Mn1—Mn2—O7—C7158.7 (3)Mn2—O9—C19—C20173.16 (19)
C6—Mn2—O7—Mn1133.50 (10)O9—C19—C20—C21178.5 (2)
C5—Mn2—O7—Mn1133.28 (10)C24—C19—C20—C210.3 (4)
O8—Mn2—O7—Mn138.38 (8)C19—C20—C21—C220.4 (4)
O9—Mn2—O7—Mn140.12 (8)C20—C21—C22—C230.1 (4)
C3—Mn1—O8—C1344.6 (2)C21—C22—C23—C240.6 (4)
C1—Mn1—O8—C1345.1 (2)C22—C23—C24—C190.7 (4)
O9—Mn1—O8—C13138.5 (2)O9—C19—C24—C23179.0 (2)
O7—Mn1—O8—C13144.0 (2)C20—C19—C24—C230.2 (4)
Mn2—Mn1—O8—C13177.0 (3)C31—N1—C25—C2661.1 (4)
C3—Mn1—O8—Mn2138.41 (10)C29—N1—C25—C26177.9 (3)
C1—Mn1—O8—Mn2131.90 (10)C27—N1—C25—C2656.5 (4)
O9—Mn1—O8—Mn238.55 (7)C31—N1—C27—C28179.5 (2)
O7—Mn1—O8—Mn239.00 (7)C29—N1—C27—C2858.0 (3)
C6—Mn2—O8—C1347.6 (3)C25—N1—C27—C2860.2 (3)
C4—Mn2—O8—C1340.9 (3)C31—N1—C29—C3060.3 (3)
C5—Mn2—O8—C13175.0 (4)C27—N1—C29—C3058.1 (3)
O9—Mn2—O8—C13138.5 (2)C25—N1—C29—C30179.0 (3)
O7—Mn2—O8—C13144.4 (3)C29—N1—C31—C3256.2 (3)
Mn1—Mn2—O8—C13176.9 (3)C27—N1—C31—C32177.8 (3)
C6—Mn2—O8—Mn1135.45 (9)C25—N1—C31—C3261.7 (4)
C4—Mn2—O8—Mn1136.02 (11)

Experimental details

Crystal data
Chemical formula(C8H20N)[Mn2(C6H5O)3(CO)6]
Mr687.49
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)18.6831 (4), 9.2037 (2), 18.5999 (4)
V3)3198.32 (12)
Z4
Radiation typeCu Kα
µ (mm1)6.88
Crystal size (mm)0.45 × 0.43 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.148, 0.229
No. of measured, independent and
observed [I > 2σ(I)] reflections
30613, 4817, 4660
Rint0.059
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.07
No. of reflections4817
No. of parameters402
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.57
Absolute structureFlack (1983), 1874 Friedel pairs
Absolute structure parameter0.051 (5)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

 

Acknowledgements

TJM acknowledges Daniel M. Perrine for technical assistance and Loyola University Maryl­and for financial support. RDP thanks the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

References

First citationBeringhelli, T., Gianfranco, C., Giuseppe, A., Sironi, A. & Freni, M. (1985). J. Chem. Soc. Dalton Trans. pp. 1507–1512.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Sanchez, K. M. & Reibenspies, J. H. (1988). Inorg. Chem. 27, 3269–3270.  CSD CrossRef CAS Web of Science Google Scholar
First citationDarensbourg, D. J., Sanchez, K. M., Reibenspies, J. H. & Rheingold, A. L. (1989). J. Am. Chem. Soc. 111, 7094–7103.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, S.-G., Kim, J.-A., Chung, Y. K., Yoon, T.-S., Kim, N. & Whanchul, S. (1995). Organometallics, 14, 1023–1029.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcNeese, T. J., Mueller, T. E., Wierda, D. A., Darensbourg, D. J. & DeLord, T. J. (1985). Inorg. Chem. 24, 3465–3468.  CSD CrossRef CAS Web of Science Google Scholar
First citationRiemann, R. H. & Singleton, E. (1973). J. Organomet. Chem. 59, C24–C26.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds