organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,8-Dimeth­­oxy­furo[2,3-b]quinoline (γ-fagarine)

aMedical College, Northwest University for Nationalities, Lanzhou 730030, Gansu Province, People's Republic of China, and bLife Sciences College, Northwest Normal University, Lanzhou 730030, Gansu Province, People's Republic of China
*Correspondence e-mail: yangjianshe008@sohu.com

(Received 24 May 2011; accepted 25 June 2011; online 6 July 2011)

The title mol­ecule, C13H11NO3, a natural compound extracted from Phellodendron chinense, exhibits a near planar framework: the mean deviations from the furo[2,3-b]quinoline ring system and from the whole mol­ecule (not including the H atoms) are 0.006 and 0.062 Å, respectively.

Related literature

For the anti-HIV properties of furoquinolines, see: Wang et al. (2009[Wang, M., Ji, T. F., Yang, J. B. & Su, Y. L. (2009). Zhongyaocai, 32, 208-210.]); Cheng et al. (2005[Cheng, M.-J., Lee, K.-H., Tsai, I.-L. & Chen, I.-S. (2005). Bioorg. Med. Chem. 13, 5915-5920.]). For a related furoquinoline structure, see: Napolitano et al. (2003[Napolitano, H. B., Silva, M., Ellena, J., Rocha, W. C., Vieira, P. C., Thiemann, O. H. & Oliva, G. (2003). Acta Cryst. E59, o1503-o1505.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO3

  • Mr = 229.23

  • Orthorhombic, P b c a

  • a = 12.491 (5) Å

  • b = 12.155 (5) Å

  • c = 14.466 (5) Å

  • V = 2196.4 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.979

  • 11659 measured reflections

  • 2047 independent reflections

  • 1278 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.05

  • 2047 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Furoquinoline is a planar unit, and its derivatives have been found to be potent anti-HIV compounds (Wang et al., 2009; Cheng et al., 2005). In the course of exploring new anti-HIV agents, we obtained a natural product, 4,8-dimethoxyfuro[2,3-b]quinoline, from phellodendron chinense. Here we report the structure and isolation of title compound.

The furo[2,3-b]quinoline ring system is near planar, exhibiting mean deviation of 0.006 Å. The two methoxy substitutional groups are nearly coplanar with the furo[2,3-b]quinoline ring system. The maximum distance from the four atoms of the two methoxy groups to the furo[2,3-b]quinoline framework mean plane is 0.300 (6) Å, for atom C14.

The title molecule crystallizes in space group Pbca, which is different from that of the closely related 4,7,8-trimethoxyfuro[2,3-b]quinoline (P21/c, Napolitano et al., 2003). There are no classic hydrogen bonds in the crystal structure of the title compound.

Related literature top

For the anti-HIV properties of furoquinolines, see: Wang et al. (2009); Cheng et al. (2005). For a related furoquinoline structure, see: Napolitano et al. (2003).

Experimental top

Phellodendron chinense (500 g) and 85% ethanol (1 L) were added to a 2 L flask. After refluxing the mixture for 5 h, the mixture was cooled to 300 K and filtrated. After the filtrate being condensed to 100 mL in water bath, the remains were extracted with ethyl acetate and dried over Na2SO4. After removing the solvent, the crude product was purified by a silica gel column using hexane/acetone, 3/1, as eluent, to give the title compound (1.10 g). Then the compound was dissolved in THF, and colorless crystals were formed on slow evaporation, at room temperature over one week.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 (for aromatic H) or 0.96 Å (for methyl groups), with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C of methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with, displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
4,8-Dimethoxyfuro[2,3-b]quinoline top
Crystal data top
C13H11NO3F(000) = 960
Mr = 229.23Dx = 1.386 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1884 reflections
a = 12.491 (5) Åθ = 2.7–24.2°
b = 12.155 (5) ŵ = 0.10 mm1
c = 14.466 (5) ÅT = 296 K
V = 2196.4 (14) Å3Block, colourless
Z = 80.25 × 0.22 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2047 independent reflections
Radiation source: fine-focus sealed tube1278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1513
Tmin = 0.976, Tmax = 0.979k = 1314
11659 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.5982P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2047 reflectionsΔρmax = 0.14 e Å3
157 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0037 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H11NO3V = 2196.4 (14) Å3
Mr = 229.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.491 (5) ŵ = 0.10 mm1
b = 12.155 (5) ÅT = 296 K
c = 14.466 (5) Å0.25 × 0.22 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2047 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1278 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.979Rint = 0.068
11659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
2047 reflectionsΔρmin = 0.12 e Å3
157 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0282 (3)0.2044 (2)0.15171 (19)0.0791 (8)
H11.05590.23070.20720.095*
C21.0798 (2)0.21016 (18)0.07253 (17)0.0654 (7)
H21.14740.24010.06270.078*
C31.01087 (17)0.16075 (15)0.00386 (14)0.0474 (5)
C41.00926 (16)0.13961 (15)0.08969 (14)0.0476 (5)
C50.91729 (17)0.08795 (16)0.12813 (14)0.0484 (5)
C60.9100 (2)0.06319 (18)0.22317 (16)0.0651 (7)
H60.96620.08070.26270.078*
C70.8204 (2)0.0136 (2)0.2568 (2)0.0819 (9)
H70.81590.00210.31960.098*
C80.7351 (2)0.0142 (2)0.1989 (2)0.0835 (9)
H80.67460.04800.22330.100*
C90.7403 (2)0.00804 (18)0.1070 (2)0.0684 (7)
C100.83121 (17)0.06121 (16)0.06827 (16)0.0524 (6)
C120.91869 (19)0.12867 (17)0.05247 (15)0.0544 (6)
C131.18328 (18)0.2155 (2)0.12003 (19)0.0788 (8)
H13A1.21770.16880.07550.118*
H13B1.23030.22690.17160.118*
H13C1.16670.28500.09200.118*
C140.5786 (3)0.0878 (3)0.0754 (3)0.1463 (17)
H14A0.60900.15310.10200.219*
H14B0.53370.10760.02420.219*
H14C0.53670.05010.12110.219*
N10.83129 (15)0.08188 (15)0.02441 (14)0.0603 (5)
O10.92925 (15)0.15576 (15)0.14407 (11)0.0756 (5)
O21.08678 (12)0.16444 (13)0.15127 (10)0.0655 (5)
O30.66204 (14)0.01773 (15)0.04411 (16)0.0967 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.102 (2)0.0731 (17)0.0625 (18)0.0109 (16)0.0183 (17)0.0169 (14)
C20.0779 (17)0.0560 (14)0.0623 (16)0.0018 (12)0.0185 (14)0.0051 (12)
C30.0573 (13)0.0387 (10)0.0461 (12)0.0039 (9)0.0084 (10)0.0004 (9)
C40.0533 (13)0.0420 (11)0.0475 (13)0.0008 (9)0.0042 (11)0.0061 (9)
C50.0569 (13)0.0397 (11)0.0487 (13)0.0001 (10)0.0111 (11)0.0039 (9)
C60.0844 (18)0.0595 (14)0.0515 (15)0.0051 (13)0.0160 (13)0.0006 (11)
C70.109 (2)0.0672 (17)0.0693 (18)0.0039 (16)0.0394 (18)0.0059 (14)
C80.076 (2)0.0610 (16)0.114 (3)0.0144 (14)0.0458 (18)0.0081 (16)
C90.0574 (15)0.0513 (13)0.097 (2)0.0045 (12)0.0184 (15)0.0099 (14)
C100.0535 (14)0.0390 (11)0.0647 (16)0.0026 (10)0.0100 (12)0.0055 (10)
C120.0681 (16)0.0475 (12)0.0476 (14)0.0119 (11)0.0006 (12)0.0002 (10)
C130.0597 (15)0.0896 (19)0.0872 (19)0.0186 (14)0.0017 (14)0.0050 (15)
C140.097 (2)0.120 (3)0.221 (5)0.061 (2)0.023 (3)0.039 (3)
N10.0608 (13)0.0559 (12)0.0641 (14)0.0049 (9)0.0062 (10)0.0050 (10)
O10.0975 (14)0.0816 (12)0.0476 (10)0.0149 (10)0.0040 (10)0.0084 (8)
O20.0644 (10)0.0786 (11)0.0535 (10)0.0168 (8)0.0009 (8)0.0068 (8)
O30.0616 (11)0.0872 (13)0.1413 (19)0.0202 (10)0.0027 (12)0.0185 (12)
Geometric parameters (Å, º) top
C1—C21.316 (3)C8—C91.358 (4)
C1—O11.375 (3)C8—H80.9300
C1—H10.9300C9—O31.372 (3)
C2—C31.446 (3)C9—C101.422 (3)
C2—H20.9300C10—N11.364 (3)
C3—C41.378 (3)C12—N11.296 (3)
C3—C121.404 (3)C12—O11.372 (3)
C4—O21.350 (2)C13—O21.429 (3)
C4—C51.422 (3)C13—H13A0.9600
C5—C61.410 (3)C13—H13B0.9600
C5—C101.418 (3)C13—H13C0.9600
C6—C71.361 (3)C14—O31.420 (3)
C6—H60.9300C14—H14A0.9600
C7—C81.397 (4)C14—H14B0.9600
C7—H70.9300C14—H14C0.9600
C2—C1—O1113.2 (2)C8—C9—C10120.9 (3)
C2—C1—H1123.4O3—C9—C10114.3 (2)
O1—C1—H1123.4N1—C10—C5123.87 (19)
C1—C2—C3106.5 (2)N1—C10—C9118.1 (2)
C1—C2—H2126.7C5—C10—C9118.0 (2)
C3—C2—H2126.7N1—C12—O1119.3 (2)
C4—C3—C12115.35 (19)N1—C12—C3131.0 (2)
C4—C3—C2139.6 (2)O1—C12—C3109.8 (2)
C12—C3—C2105.1 (2)O2—C13—H13A109.5
O2—C4—C3126.58 (19)O2—C13—H13B109.5
O2—C4—C5114.85 (19)H13A—C13—H13B109.5
C3—C4—C5118.56 (19)O2—C13—H13C109.5
C6—C5—C10119.8 (2)H13A—C13—H13C109.5
C6—C5—C4121.8 (2)H13B—C13—H13C109.5
C10—C5—C4118.35 (19)O3—C14—H14A109.5
C7—C6—C5119.7 (2)O3—C14—H14B109.5
C7—C6—H6120.1H14A—C14—H14B109.5
C5—C6—H6120.1O3—C14—H14C109.5
C6—C7—C8121.3 (3)H14A—C14—H14C109.5
C6—C7—H7119.3H14B—C14—H14C109.5
C8—C7—H7119.3C12—N1—C10112.91 (19)
C9—C8—C7120.2 (2)C12—O1—C1105.51 (19)
C9—C8—H8119.9C4—O2—C13119.57 (18)
C7—C8—H8119.9C9—O3—C14116.6 (3)
C8—C9—O3124.8 (2)
O1—C1—C2—C30.2 (3)C4—C5—C10—C9179.04 (18)
C1—C2—C3—C4178.6 (2)C8—C9—C10—N1179.6 (2)
C1—C2—C3—C120.2 (2)O3—C9—C10—N10.7 (3)
C12—C3—C4—O2178.62 (18)C8—C9—C10—C51.4 (3)
C2—C3—C4—O20.3 (4)O3—C9—C10—C5178.24 (18)
C12—C3—C4—C50.4 (3)C4—C3—C12—N10.1 (3)
C2—C3—C4—C5178.7 (2)C2—C3—C12—N1179.0 (2)
O2—C4—C5—C61.2 (3)C4—C3—C12—O1178.92 (17)
C3—C4—C5—C6179.67 (19)C2—C3—C12—O10.1 (2)
O2—C4—C5—C10178.73 (17)O1—C12—N1—C10179.06 (18)
C3—C4—C5—C100.4 (3)C3—C12—N1—C100.1 (3)
C10—C5—C6—C70.1 (3)C5—C10—N1—C120.1 (3)
C4—C5—C6—C7179.9 (2)C9—C10—N1—C12178.82 (18)
C5—C6—C7—C80.4 (4)N1—C12—O1—C1179.27 (19)
C6—C7—C8—C90.0 (4)C3—C12—O1—C10.1 (2)
C7—C8—C9—O3178.7 (2)C2—C1—O1—C120.2 (3)
C7—C8—C9—C101.0 (4)C3—C4—O2—C131.7 (3)
C6—C5—C10—N1179.89 (19)C5—C4—O2—C13179.32 (19)
C4—C5—C10—N10.2 (3)C8—C9—O3—C1410.6 (4)
C6—C5—C10—C91.0 (3)C10—C9—O3—C14169.1 (2)

Experimental details

Crystal data
Chemical formulaC13H11NO3
Mr229.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.491 (5), 12.155 (5), 14.466 (5)
V3)2196.4 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.22 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.976, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
11659, 2047, 1278
Rint0.068
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.05
No. of reflections2047
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (QN2009048) and the Excellent Young Funds 211020712 is greatly appreciated.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, M.-J., Lee, K.-H., Tsai, I.-L. & Chen, I.-S. (2005). Bioorg. Med. Chem. 13, 5915–5920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNapolitano, H. B., Silva, M., Ellena, J., Rocha, W. C., Vieira, P. C., Thiemann, O. H. & Oliva, G. (2003). Acta Cryst. E59, o1503–o1505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Ji, T. F., Yang, J. B. & Su, Y. L. (2009). Zhongyaocai, 32, 208–210.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds