organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hexyl­ammonium 4-meth­­oxy­benzoate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 11 June 2011; accepted 6 July 2011; online 30 July 2011)

In the crystal of the title molecular salt, C6H14N+·C8H7O3, strong N—H⋯O hydrogen bonds are formed between the ammonium H atoms and the carboxyl­ate O atoms. The resulting supra­molecular structure is based on chains running in the [010] direction. The dihedral angle between the –CO2 group and the benzene ring is 8.94 (17)° and the methoxy C atom deviates by 1.374 Å from the ring.

Related literature

The title compound was studied during our search for aromatic compounds containing ammonium salts or amidogens having dielectric–ferroelectric properties (Wu et al., 2011[Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319-324.]). For general background on ferroelectric metal-organic frameworks, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N+·C8H7O3

  • Mr = 251.32

  • Monoclinic, P 21

  • a = 8.9076 (18) Å

  • b = 6.6025 (13) Å

  • c = 11.778 (2) Å

  • β = 102.85 (3)°

  • V = 675.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.842, Tmax = 1.000

  • 7050 measured reflections

  • 1685 independent reflections

  • 1460 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 1.08

  • 1685 reflections

  • 165 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.89 1.86 2.744 (3) 173
N1—H1A⋯O2i 0.89 1.91 2.787 (2) 167
N1—H1B⋯O2ii 0.89 1.95 2.830 (3) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our research deals with new dielectric-ferroelectric materials. Recent studies have revealed that organic salt compounds which have one or more amidogens probably have this kind of property (Fu et al., 2009; Zhang et al., 2008, 2010; Ye et al., 2006). Thus, we are searching for aromatic compounds containing amidogens having dielectric-ferroelectric properties (Wu et al., 2011). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent below the melting point of the salt (413 K – 415 K). We have found that cyclohexylammonium 4-methoxybenzoate has no dielectric inhomogeneity from 80 K to 405 K. Herein, we describe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a cyclohexylammonium cation, and a 4-methoxybenzoate anion (Fig. 1). Strong N—H···O hydrogen bonds are formed between the H atoms of the ammonium group and the O atoms of the carboxylate group, which also make great contribution to the stability of the crystal structure, linking the cations and anions into chains along the b axis (Table 1 and Fig. 2).

Related literature top

The title compound was studied during our search for aromatic compounds containing amidogens having dielectric-ferroelectric properties (Wu et al., 2011). For general background on ferroelectric metal-organic frameworks, see: Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009).

Experimental top

The title compound was obtained by addition of para-methoxybenzoic acid (1.52 g, 0.01 mol) to a solution of cyclohexylamine (1.02 g, 0.01 mol) in methanol, in the stoichiometric ratio 1:1. Good quality single crystals were obtained by slow evaporation after two days (the chemical yield is 45%).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methylene), C—H = 0.96 Å (methyl), C—H = 0.98 Å (methine), and C—H = 0.93 Å (aromatic), and with Uiso(H) = 1.2Ueq(C except methyl) or Uiso(H) = 1.5Ueq(C of methyl). The H atoms bonded to N1 were refined as riding atoms with N—H = 0.89 Å, and Uiso(H) = 1.5Ueq(N1). Since no significant anomalous dispersion is expected for this formula, measured Friedel pairs (1408) were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, along the a axis. Dashed lines indicate hydrogen bonds.
Cyclohexylammonium 4-methoxybenzoate top
Crystal data top
C6H14N+·C8H7O3F(000) = 272
Mr = 251.32Dx = 1.236 Mg m3
Monoclinic, P21Melting point: 413 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.9076 (18) Åθ = 6.2–55.3°
b = 6.6025 (13) ŵ = 0.09 mm1
c = 11.778 (2) ÅT = 293 K
β = 102.85 (3)°Prism, colourless
V = 675.3 (2) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
1685 independent reflections
Radiation source: fine-focus sealed tube1460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.842, Tmax = 1.000l = 1515
7050 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.1056P]
where P = (Fo2 + 2Fc2)/3
1685 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.18 e Å3
0 constraints
Crystal data top
C6H14N+·C8H7O3V = 675.3 (2) Å3
Mr = 251.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9076 (18) ŵ = 0.09 mm1
b = 6.6025 (13) ÅT = 293 K
c = 11.778 (2) Å0.2 × 0.2 × 0.2 mm
β = 102.85 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
1685 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1460 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.030
7050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
1685 reflectionsΔρmin = 0.18 e Å3
165 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1890 (3)0.1036 (5)1.0959 (2)0.0572 (7)
H1D0.14250.17251.02500.086*
H1E0.13220.13291.15430.086*
H1F0.29340.14881.12220.086*
C20.2544 (3)0.1768 (4)0.9883 (2)0.0408 (6)
C30.2302 (3)0.3798 (4)0.9597 (2)0.0459 (6)
H30.17500.46051.00070.055*
C40.2879 (3)0.4619 (3)0.8707 (2)0.0390 (5)
H40.27230.59870.85300.047*
C50.3689 (2)0.3440 (3)0.80676 (18)0.0320 (5)
C60.3940 (3)0.1422 (4)0.83805 (19)0.0381 (5)
H60.44900.06120.79710.046*
C70.3391 (3)0.0583 (4)0.9290 (2)0.0420 (6)
H70.35920.07660.94980.050*
C80.4250 (2)0.4355 (3)0.70654 (19)0.0338 (5)
C90.7266 (2)0.9048 (4)0.64892 (18)0.0352 (5)
H90.73820.90810.73360.042*
C100.7925 (3)0.7064 (4)0.6172 (3)0.0476 (6)
H10A0.77630.69600.53320.057*
H10B0.73960.59430.64450.057*
C110.9646 (3)0.6941 (4)0.6720 (3)0.0562 (7)
H11A0.97960.68920.75610.067*
H11B1.00610.57030.64680.067*
C121.0512 (3)0.8741 (5)0.6383 (2)0.0534 (7)
H12A1.15870.86560.67820.064*
H12B1.04580.87100.55520.064*
C130.9841 (3)1.0711 (4)0.6698 (3)0.0533 (7)
H13A1.03761.18370.64350.064*
H13B0.99941.08050.75380.064*
C140.8118 (3)1.0854 (4)0.6142 (2)0.0435 (6)
H14A0.77041.20940.63910.052*
H14B0.79701.08960.53010.052*
N10.5590 (2)0.9176 (3)0.59367 (15)0.0354 (4)
H1A0.54570.90730.51670.053*
H1B0.52211.03580.61140.053*
H1C0.50930.81720.61990.053*
O10.4131 (2)0.6223 (3)0.69286 (16)0.0517 (5)
O20.47886 (19)0.3187 (3)0.64103 (13)0.0452 (4)
O30.1875 (2)0.1079 (3)1.07544 (16)0.0599 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0654 (16)0.0534 (16)0.0579 (16)0.0038 (15)0.0249 (13)0.0187 (15)
C20.0483 (13)0.0402 (13)0.0366 (12)0.0055 (11)0.0155 (10)0.0006 (10)
C30.0602 (15)0.0351 (12)0.0500 (14)0.0010 (12)0.0284 (11)0.0100 (11)
C40.0459 (13)0.0288 (11)0.0453 (13)0.0011 (10)0.0162 (10)0.0006 (9)
C50.0312 (10)0.0313 (12)0.0329 (10)0.0017 (9)0.0058 (8)0.0004 (9)
C60.0429 (12)0.0343 (12)0.0392 (12)0.0056 (10)0.0138 (9)0.0000 (10)
C70.0534 (14)0.0319 (12)0.0426 (13)0.0034 (11)0.0148 (11)0.0049 (10)
C80.0316 (10)0.0354 (13)0.0351 (11)0.0018 (9)0.0089 (8)0.0038 (9)
C90.0406 (11)0.0329 (11)0.0327 (11)0.0030 (10)0.0096 (8)0.0015 (9)
C100.0499 (15)0.0259 (12)0.0675 (18)0.0038 (10)0.0138 (13)0.0009 (11)
C110.0535 (16)0.0412 (15)0.0723 (19)0.0159 (13)0.0103 (14)0.0038 (13)
C120.0419 (13)0.0561 (18)0.0619 (16)0.0085 (13)0.0111 (11)0.0013 (14)
C130.0448 (14)0.0416 (16)0.0712 (18)0.0015 (12)0.0085 (13)0.0071 (13)
C140.0449 (14)0.0298 (12)0.0561 (15)0.0005 (10)0.0115 (12)0.0008 (11)
N10.0432 (10)0.0296 (9)0.0365 (9)0.0016 (8)0.0155 (7)0.0016 (8)
O10.0631 (11)0.0335 (9)0.0680 (12)0.0048 (9)0.0350 (9)0.0120 (9)
O20.0629 (11)0.0387 (9)0.0398 (9)0.0088 (8)0.0241 (8)0.0046 (8)
O30.0912 (14)0.0467 (11)0.0552 (11)0.0064 (11)0.0446 (10)0.0020 (9)
Geometric parameters (Å, º) top
C1—O31.417 (3)C9—C141.518 (3)
C1—H1D0.9600C9—H90.9800
C1—H1E0.9600C10—C111.528 (4)
C1—H1F0.9600C10—H10A0.9700
C2—O31.374 (3)C10—H10B0.9700
C2—C71.380 (3)C11—C121.517 (4)
C2—C31.387 (4)C11—H11A0.9700
C3—C41.376 (3)C11—H11B0.9700
C3—H30.9300C12—C131.511 (4)
C4—C51.392 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.387 (3)C13—C141.532 (4)
C5—C81.507 (3)C13—H13A0.9700
C6—C71.389 (3)C13—H13B0.9700
C6—H60.9300C14—H14A0.9700
C7—H70.9300C14—H14B0.9700
C8—O11.246 (3)N1—H1A0.8900
C8—O21.259 (3)N1—H1B0.8900
C9—N11.492 (3)N1—H1C0.8900
C9—C101.516 (3)
O3—C1—H1D109.5C11—C10—H10A109.6
O3—C1—H1E109.5C9—C10—H10B109.6
H1D—C1—H1E109.5C11—C10—H10B109.6
O3—C1—H1F109.5H10A—C10—H10B108.1
H1D—C1—H1F109.5C12—C11—C10111.6 (2)
H1E—C1—H1F109.5C12—C11—H11A109.3
O3—C2—C7124.6 (2)C10—C11—H11A109.3
O3—C2—C3115.6 (2)C12—C11—H11B109.3
C7—C2—C3119.9 (2)C10—C11—H11B109.3
C4—C3—C2120.1 (2)H11A—C11—H11B108.0
C4—C3—H3119.9C13—C12—C11111.0 (2)
C2—C3—H3119.9C13—C12—H12A109.4
C3—C4—C5121.2 (2)C11—C12—H12A109.4
C3—C4—H4119.4C13—C12—H12B109.4
C5—C4—H4119.4C11—C12—H12B109.4
C6—C5—C4117.8 (2)H12A—C12—H12B108.0
C6—C5—C8122.08 (19)C12—C13—C14111.2 (2)
C4—C5—C8120.14 (19)C12—C13—H13A109.4
C5—C6—C7121.7 (2)C14—C13—H13A109.4
C5—C6—H6119.2C12—C13—H13B109.4
C7—C6—H6119.2C14—C13—H13B109.4
C2—C7—C6119.4 (2)H13A—C13—H13B108.0
C2—C7—H7120.3C9—C14—C13110.5 (2)
C6—C7—H7120.3C9—C14—H14A109.6
O1—C8—O2124.1 (2)C13—C14—H14A109.6
O1—C8—C5117.7 (2)C9—C14—H14B109.6
O2—C8—C5118.20 (19)C13—C14—H14B109.6
N1—C9—C10110.26 (19)H14A—C14—H14B108.1
N1—C9—C14110.48 (18)C9—N1—H1A109.5
C10—C9—C14111.59 (17)C9—N1—H1B109.5
N1—C9—H9108.1H1A—N1—H1B109.5
C10—C9—H9108.1C9—N1—H1C109.5
C14—C9—H9108.1H1A—N1—H1C109.5
C9—C10—C11110.5 (2)H1B—N1—H1C109.5
C9—C10—H10A109.6C2—O3—C1117.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.891.862.744 (3)173
N1—H1A···O2i0.891.912.787 (2)167
N1—H1B···O2ii0.891.952.830 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H14N+·C8H7O3
Mr251.32
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.9076 (18), 6.6025 (13), 11.778 (2)
β (°) 102.85 (3)
V3)675.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.842, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7050, 1685, 1460
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.08
No. of reflections1685
No. of parameters165
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.891.862.744 (3)172.9
N1—H1A···O2i0.891.912.787 (2)166.5
N1—H1B···O2ii0.891.952.830 (3)168.0
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds