organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(ethyl­sulfan­yl)-1,4,5,8-tetra­thia­fulvalene-6,7-dicarbo­nitrile

aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: lidongfeng@mail.ccut.edu.cn

(Received 1 July 2011; accepted 16 July 2011; online 23 July 2011)

In the title compound, C12H10N2S6, all non-H atoms, except for those in the ethyl groups, lie in the same non-crystallographic plane, with a r.m.s. deviation of 0.0366 (5) Å. In the crystal structure, mol­ecules are linked through weak C—H⋯N hydrogen bonds between methyl and cyano groups, forming centrosymmetric dimers. The dimers are arranged along the a axis, due to inter­molecular N⋯S [3.337 (4) Å] inter­actions.

Related literature

For synthetic uses of dicyano-substituted tetra­thia­fulvalene derivatives, see: Chen et al. (2007[Chen, T., Wang, C. L., Qiu, H., Jin, L. Y., Yin, B. Z. & Imafuku, K. (2007). Heterocycles, 71, 549-555.]); Leng et al. (2010[Leng, F. S., Wang, X. S., Jin, L. Y. & Yin, B. Z. (2010). Dyes Pigm. 87, 89-94.]). For a related structure, see: Jiang et al. (2010[Jiang, C.-P., Li, B., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o2079.]). For the synthesis of the title compound, see: Chen et al. (2005[Chen, T., Wang, C. L., Cong, Z. Q., Yin, B. Z. & Imafuku, K. (2005). Heterocycles, 65, 187-193.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2S6

  • Mr = 374.58

  • Triclinic, [P \overline 1]

  • a = 7.8357 (16) Å

  • b = 8.9777 (18) Å

  • c = 12.618 (3) Å

  • α = 76.48 (3)°

  • β = 77.59 (3)°

  • γ = 73.20 (3)°

  • V = 815.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.886, Tmax = 0.907

  • 8038 measured reflections

  • 3689 independent reflections

  • 3079 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.109

  • S = 1.15

  • 3689 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯N2i 0.96 2.73 3.659 (4) 164
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dicyano-substituted tetrathiafulvalene derivatives (TTFs) are key precursors for the preparation of the TTF-annulated prophyrazines. We have recently synthesized the symmetrical (Chen et al., 2007) and the unsymmetrical TTF-annulated porphyrazines (Leng et al., 2010) using such precursors. In this paper, we report the crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths and angles are in the normal ranges and comparable with those observed in a closely related compound (Jiang et al., 2010). In the title compound, except for two ethyl groups, all atoms lie on the same plane. In the crystal, the molecules form dimers through weak intermolecular C—H···N hydrogen bonds (Table 1), and dimers are arranged along the a axis, due to N···S interactions.

Related literature top

For synthetic uses of dicyano-substituted tetrathiafulvalene derivatives, see: Chen et al. (2007); Leng et al. (2010). For a related structure, see: Jiang et al. (2010). For the synthesis of the title compound, see: Chen et al. (2005).

Experimental top

The title compound was prepared according to the literature (Chen et al., 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution in a mixture of dichloromethane and petroleum ether, at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.96 or 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.5 Ueq(C) for methyl groups and Uiso(H) = 1.2 Ueq(C) for methylene groups.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 20% probability level.
2,3-Bis(ethylsulfanyl)-1,4,5,8-tetrathiafulvalene-6,7-dicarbonitrile top
Crystal data top
C12H10N2S6Z = 2
Mr = 374.58F(000) = 384
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8357 (16) ÅCell parameters from 3994 reflections
b = 8.9777 (18) Åθ = 3.2–27.5°
c = 12.618 (3) ŵ = 0.83 mm1
α = 76.48 (3)°T = 293 K
β = 77.59 (3)°Block, black
γ = 73.20 (3)°0.15 × 0.13 × 0.12 mm
V = 815.8 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3689 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.886, Tmax = 0.907k = 1110
8038 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.1175P]
where P = (Fo2 + 2Fc2)/3
3689 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.42 e Å3
0 constraints
Crystal data top
C12H10N2S6γ = 73.20 (3)°
Mr = 374.58V = 815.8 (3) Å3
Triclinic, P1Z = 2
a = 7.8357 (16) ÅMo Kα radiation
b = 8.9777 (18) ŵ = 0.83 mm1
c = 12.618 (3) ÅT = 293 K
α = 76.48 (3)°0.15 × 0.13 × 0.12 mm
β = 77.59 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3689 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3079 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.907Rint = 0.022
8038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.15Δρmax = 0.37 e Å3
3689 reflectionsΔρmin = 0.42 e Å3
183 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3781 (3)0.3004 (3)1.17179 (18)0.0471 (5)
C21.2353 (2)0.2956 (2)1.11964 (14)0.0346 (4)
C31.0593 (2)0.3581 (2)1.15573 (14)0.0325 (4)
C40.9973 (3)0.4385 (2)1.24706 (16)0.0404 (4)
C51.0603 (2)0.2358 (2)0.99101 (14)0.0312 (4)
C61.0078 (2)0.1834 (2)0.91471 (14)0.0314 (4)
C70.8174 (3)0.1324 (2)0.78825 (14)0.0362 (4)
C80.9902 (3)0.0668 (2)0.74847 (14)0.0348 (4)
C91.2580 (3)0.0150 (3)0.56711 (17)0.0514 (5)
H9A1.34290.01010.61830.062*
H9B1.31150.04890.51040.062*
C101.2308 (4)0.1859 (3)0.5143 (2)0.0673 (7)
H10A1.14250.21340.46620.101*
H10B1.34300.20420.47250.101*
H10C1.18950.24990.57050.101*
C110.5366 (3)0.3331 (3)0.6882 (2)0.0658 (7)
H11A0.42520.34570.66150.079*
H11B0.50780.39000.74890.079*
C120.6628 (5)0.4051 (4)0.5971 (3)0.1003 (13)
H12A0.77690.38590.62100.150*
H12B0.61220.51710.57890.150*
H12C0.68010.35840.53330.150*
N11.4901 (3)0.3032 (3)1.21488 (19)0.0733 (6)
N20.9451 (3)0.5027 (2)1.31940 (17)0.0632 (5)
S11.28831 (6)0.20402 (6)1.00515 (4)0.03914 (14)
S20.89965 (6)0.33925 (6)1.08715 (4)0.03802 (14)
S30.77877 (6)0.21620 (6)0.90659 (4)0.04141 (14)
S41.15711 (6)0.07338 (6)0.81983 (4)0.03804 (14)
S50.62815 (7)0.12625 (7)0.73859 (4)0.04650 (16)
S61.05259 (8)0.03845 (7)0.64039 (4)0.04750 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0377 (10)0.0631 (13)0.0461 (11)0.0110 (10)0.0063 (9)0.0232 (10)
C20.0360 (9)0.0404 (9)0.0320 (9)0.0122 (8)0.0083 (7)0.0094 (7)
C30.0369 (9)0.0348 (9)0.0290 (8)0.0107 (7)0.0058 (7)0.0090 (7)
C40.0420 (10)0.0436 (10)0.0369 (10)0.0073 (9)0.0071 (8)0.0136 (8)
C50.0324 (8)0.0345 (9)0.0288 (8)0.0090 (7)0.0058 (7)0.0081 (7)
C60.0341 (8)0.0355 (9)0.0274 (8)0.0107 (7)0.0068 (7)0.0070 (7)
C70.0404 (9)0.0443 (10)0.0301 (9)0.0177 (8)0.0111 (7)0.0050 (7)
C80.0434 (9)0.0416 (9)0.0255 (8)0.0183 (8)0.0084 (7)0.0060 (7)
C90.0471 (11)0.0647 (14)0.0430 (11)0.0095 (11)0.0012 (9)0.0245 (10)
C100.0797 (18)0.0730 (16)0.0516 (14)0.0346 (14)0.0086 (12)0.0144 (12)
C110.0585 (14)0.0618 (15)0.0846 (18)0.0060 (12)0.0410 (14)0.0121 (13)
C120.115 (3)0.085 (2)0.110 (3)0.050 (2)0.065 (2)0.0395 (19)
N10.0473 (11)0.1120 (18)0.0767 (15)0.0167 (12)0.0174 (11)0.0453 (14)
N20.0704 (13)0.0684 (13)0.0527 (12)0.0068 (11)0.0075 (10)0.0303 (10)
S10.0314 (2)0.0513 (3)0.0399 (3)0.0088 (2)0.00407 (19)0.0216 (2)
S20.0303 (2)0.0491 (3)0.0386 (3)0.0089 (2)0.00466 (18)0.0176 (2)
S30.0336 (2)0.0591 (3)0.0365 (3)0.0109 (2)0.00710 (19)0.0180 (2)
S40.0348 (2)0.0504 (3)0.0336 (3)0.0103 (2)0.00648 (18)0.0162 (2)
S50.0454 (3)0.0585 (3)0.0465 (3)0.0236 (3)0.0173 (2)0.0084 (2)
S60.0633 (3)0.0552 (3)0.0346 (3)0.0267 (3)0.0028 (2)0.0185 (2)
Geometric parameters (Å, º) top
C1—N11.136 (3)C8—S41.7606 (18)
C1—C21.430 (3)C9—C101.496 (3)
C2—C31.352 (3)C9—S61.810 (2)
C2—S11.7423 (19)C9—H9A0.9700
C3—C41.425 (2)C9—H9B0.9700
C3—S21.7314 (18)C10—H10A0.9600
C4—N21.132 (3)C10—H10B0.9600
C5—C61.346 (2)C10—H10C0.9600
C5—S21.7646 (19)C11—C121.500 (4)
C5—S11.7673 (18)C11—S51.800 (3)
C6—S41.7495 (19)C11—H11A0.9700
C6—S31.7543 (18)C11—H11B0.9700
C7—C81.348 (3)C12—H12A0.9600
C7—S51.7483 (18)C12—H12B0.9600
C7—S31.7569 (19)C12—H12C0.9600
C8—S61.7439 (19)
N1—C1—C2178.9 (3)H9A—C9—H9B107.7
C3—C2—C1122.92 (17)C9—C10—H10A109.5
C3—C2—S1117.99 (14)C9—C10—H10B109.5
C1—C2—S1119.09 (15)H10A—C10—H10B109.5
C2—C3—C4123.81 (17)C9—C10—H10C109.5
C2—C3—S2118.14 (13)H10A—C10—H10C109.5
C4—C3—S2118.05 (14)H10B—C10—H10C109.5
N2—C4—C3178.8 (2)C12—C11—S5113.3 (2)
C6—C5—S2120.78 (14)C12—C11—H11A108.9
C6—C5—S1123.79 (15)S5—C11—H11A108.9
S2—C5—S1115.42 (10)C12—C11—H11B108.9
C5—C6—S4123.86 (14)S5—C11—H11B108.9
C5—C6—S3121.49 (15)H11A—C11—H11B107.7
S4—C6—S3114.62 (10)C11—C12—H12A109.5
C8—C7—S5125.25 (15)C11—C12—H12B109.5
C8—C7—S3117.19 (14)H12A—C12—H12B109.5
S5—C7—S3117.34 (11)C11—C12—H12C109.5
C7—C8—S6123.52 (14)H12A—C12—H12C109.5
C7—C8—S4116.94 (14)H12B—C12—H12C109.5
S6—C8—S4119.23 (11)C2—S1—C594.04 (9)
C10—C9—S6113.94 (17)C3—S2—C594.40 (8)
C10—C9—H9A108.8C6—S3—C795.39 (9)
S6—C9—H9A108.8C6—S4—C895.48 (9)
C10—C9—H9B108.8C7—S5—C11101.18 (10)
S6—C9—H9B108.8C8—S6—C9102.91 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···N2i0.962.733.659 (4)164
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H10N2S6
Mr374.58
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8357 (16), 8.9777 (18), 12.618 (3)
α, β, γ (°)76.48 (3), 77.59 (3), 73.20 (3)
V3)815.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.886, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
8038, 3689, 3079
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.109, 1.15
No. of reflections3689
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.42

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···N2i0.962.733.659 (4)164.0
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 21062022).

References

First citationChen, T., Wang, C. L., Cong, Z. Q., Yin, B. Z. & Imafuku, K. (2005). Heterocycles, 65, 187–193.  CAS Google Scholar
First citationChen, T., Wang, C. L., Qiu, H., Jin, L. Y., Yin, B. Z. & Imafuku, K. (2007). Heterocycles, 71, 549–555.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJiang, C.-P., Li, B., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o2079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeng, F. S., Wang, X. S., Jin, L. Y. & Yin, B. Z. (2010). Dyes Pigm. 87, 89–94.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds