metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1023-m1024

Bis[N-(2-amino­eth­yl)ethane-1,2-di­amine-κ3N,N′,N′′]copper(II) tris­­[diammine­tetra­kis­(thio­cyanato-κN)chromate(III)] thio­cyanate di­methyl sulfoxide tetra­deca­solvate monohydrate

aTaras Shevchenko National University of Kyiv, Department of Inorganic Chemistry, Volodymyrska str. 64, Kyiv 01033, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: rusanova_j@yahoo.com

(Received 15 June 2011; accepted 30 June 2011; online 6 July 2011)

The ionic title complex, [Cu(C4H13N3)2]2[Cr(NCS)4(NH3)2]3(NCS)·14C2H6OS·H2O, consists of complex [Cu(dien)2]2+ cations [dien is N-(2-amino­eth­yl)ethane-1,2-diamine], com­plex [Cr(NCS)4(NH3)2] anions, an NCS counter-anion and uncoordinated dimethyl sulfoxide (DMSO) and water solvent mol­ecules. One of the Cr atoms lies on an inversion center, while the second Cr atom and the Cu atom lie in general positions. The thio­cyanate counter-anion and water mol­ecule are disordered over two positions close to an inversion center. There are several types of hydrogen-bond inter­actions present in the title compound, which connect the complex cations and anions into bulky [Cu2Cr3] polynuclear species. The four NH3 groups of the complex anions and six bridging DMSO O atoms link the three complex anions via hydrogen bonding into the anionic polynuclear species [Cr(NCS)4(NH3)2]3·6DMSO. The last one is connected by four bridging DMSO O atoms with the two complex copper cations through N—H⋯ O hydrogen bonds between the terminal NH3 groups of the anionic polynuclear species and the NH and NH2 groups of the dien ligand. One additional DMSO mol­ecule is connected via hydrogen bonding to one of the terminal NH3 groups of the anionic polynuclear species. Another DMSO mol­ecule is connected via hydrogen bonding to each Cu(dien)2]2+ cation.

Related literature

For background to direct synthesis, see: Nesterov et al. (2004[Nesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43 7868-7876.], 2006[Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605-4607.]); Kovbasyuk et al. (1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, pp. 161-163.], 1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]); Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, pp. 263-266.]). For related stuctures, see: Zhang et al. (2001[Zhang, K.-L., Chen, W., Xu, Y., Wang, Z., Zhong, Z. J. & You, X.-Z. (2001). Polyhedron, pp. 2033-2036.]); Cucos et al. (2006[Cucos, A., Avarvari, N., Andruh, M., Journaux, Y., Muller, A. & Schmidtmann, M. (2006). Eur. J. Inorg. Chem. pp. 903-907.]); Cherkasova & Gorunova (2003[Cherkasova, T. G. & Gorunova, I. P. (2003). Zh. Neorg. Khim. 48, 611-615.]); Kolotilov et al. (2010[Kolotilov, S. V., Cador, O., Gavrilenko, K. S., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Eur. J. Inorg. Chem. 8, 1255-1266.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H13N3)2]2[Cr(NCS)4(NH3)2]3(NCS)·14C2H6OS·H2O

  • Mr = 2665.12

  • Monoclinic, P 21 /n

  • a = 11.9110 (2) Å

  • b = 26.5332 (5) Å

  • c = 20.2756 (4) Å

  • β = 91.256 (2)°

  • V = 6406.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 100 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.] Tmin = 0.60, Tmax = 0.72

  • 32460 measured reflections

  • 14316 independent reflections

  • 9143 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.08

  • 14316 reflections

  • 660 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N16 0.86 2.02 2.83 (3) 157
N1—H1N⋯O2 0.97 2.10 3.029 (4) 158
N2—H2A⋯O5 0.92 2.26 3.083 (4) 149
N2—H2B⋯O1W 0.92 2.09 2.919 (10) 150
N4—H4N⋯O7 0.99 1.96 2.928 (4) 167
N5—H5A⋯O5 0.92 2.24 2.996 (4) 140
N6—H6B⋯S14i 0.92 2.62 3.539 (6) 174
N9—H9A⋯O1 0.91 2.16 3.049 (3) 165
N9—H9B⋯O6 0.91 2.02 2.881 (4) 157
N9—H9C⋯O3 0.91 2.23 3.093 (4) 157
N14—H14A⋯O3 0.91 2.19 3.001 (4) 148
N14—H14B⋯O6 0.91 1.96 2.853 (4) 169
N14—H14C⋯O1 0.91 2.18 3.066 (4) 166
N15—H15A⋯O4 0.91 2.12 3.023 (4) 175
N15—H15B⋯O5 0.91 2.06 2.965 (4) 173
N15—H15C⋯O2 0.91 2.09 2.992 (4) 172
O1W—H1W⋯N16 0.86 2.02 2.83 (3) 157
N3—H3A⋯S4ii 0.92 2.67 3.518 (3) 154
N5—H5B⋯S1iii 0.92 2.66 3.529 (3) 158
O1W—H2W⋯S6iv 0.87 2.77 3.523 (11) 145
N6—H6A⋯S4ii 0.92 2.80 3.686 (4) 161
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As it was shown in our previous work direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997)). Continuing our investigations in this paper we present a novel Cu/Cr heterometallic ionic complex which has been synthesized using zerovalent copper, Reinecke's salt and diethylenetriamine as starting materials.

As it shown on Fig.1 Cu atoms in complex cations are in distorted square bypiramidal coordination environment - four N atoms in equatorial position and two N atoms in axial position. The Cr centers are coordinated to six N atoms - four NCS-groups in equatorial position and two NH3 molecules in axial position.The four NH3 groups of the complex anion and bridging six oxygen atoms of solvent DMSO H-link the three complex anions into the anionic polynuclear species [Cr(NCS)4(NH3)2]3 . 6DMSO. The last one is connected by four bridging oxygen atoms of the solvent (DMSO) molecues with the two complex copper cations through N—H··· O hydrogen bonds between the terminal NH3 groups of the anionic polynuclear species and NH, NH2 groups of the dien ligand. One additional DMSO molecules is H-connected to one of the terminal NH3 groups of the anionic polynuclear species. Another one DMSO molecule is H-connected to each Cu(dien)2]2+ cations.

The bond distances and angles in the title molecule agree well with the corresponding bond distances and angles reported in closely related compounds (Zhang et al., 2001, Cucos et al., 2006; Cherkasova et al., 2003; Kolotilov et al., 2010). The crystal packing of the title compound is presented on Fig 2.

Related literature top

For background to direct synthesis, see: Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997). For related stuctures, see Zhang et al. (2001); Cucos et al. (2006); Cherkasova & Gorunova (2003); Kolotilov et al. (2010).

Experimental top

For the preparation of the title compound, copper powder 0.08 g (1.26 mmol), NH4[Cr(NCS)4(NH3)2].H2O 0.10 g (1.26 mmol), NH4NCS 0,10 g (1,26 mmol), 0.27 ml (2.52 mmol) diethylenetriamine (dien), 20 ml of DMSO, were heated to 323–333 K and stirred magnetically for 15 min, until total dissolution of the copper powder was observed. Addition of a few ml of the PriOH to the cooled solution leads to precipitation within few days of the dark blue crystals suitable for X-ray analysis. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo at room temperature (yield: 0.89 g, 53%).

Refinement top

The NCS group lies close to the inversion center and refined with multiplicity 0.5. The water molecules refined with multiplicity of 0.5 because their displacement depends on the orientation of NCS anions. One of the DMSO molecules is disordered over two positions A and B for sulfur atoms (S13) and methyl group (C27) with multiplicity of 0.687 and 0.313 respectively. The second DMSO molecule is also disordered over two positions A and B with multiplicity of 0.65 and 0.35 for C23 and C24 atoms. All hydrogen atoms where placed at calculated positions which were refined as 'riding' model.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound along a axis.
Bis[N-(2-aminoethyl)ethane-1,2-diamine- κ3N,N',N'']copper(II) tris[diamminetetrakis(thiocyanato-κN)chromate(III)] thiocyanate dimethyl sulfoxide tetradecasolvate monohydrate top
Crystal data top
[Cu(C4H13N3)2]2[Cr(NCS)4(NH3)2]3(NCS)·14C2H6OS·H2OF(000) = 2794
Mr = 2665.12Dx = 1.381 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6255 reflections
a = 11.9110 (2) Åθ = 2.7–25.0°
b = 26.5332 (5) ŵ = 1.07 mm1
c = 20.2756 (4) ÅT = 100 K
β = 91.256 (2)°Prism, dark-blue
V = 6406.3 (2) Å30.5 × 0.4 × 0.3 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
14316 independent reflections
Radiation source: fine-focus sealed tube9143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and ϕ scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1511
Tmin = 0.60, Tmax = 0.72k = 3433
32460 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0585P)2]
where P = (Fo2 + 2Fc2)/3
14316 reflections(Δ/σ)max = 0.092
660 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu(C4H13N3)2]2[Cr(NCS)4(NH3)2]3(NCS)·14C2H6OS·H2OV = 6406.3 (2) Å3
Mr = 2665.12Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.9110 (2) ŵ = 1.07 mm1
b = 26.5332 (5) ÅT = 100 K
c = 20.2756 (4) Å0.5 × 0.4 × 0.3 mm
β = 91.256 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
14316 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
9143 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.72Rint = 0.043
32460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.08Δρmax = 0.96 e Å3
14316 reflectionsΔρmin = 0.83 e Å3
660 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.30425 (3)0.940916 (16)0.71495 (2)0.01954 (11)
Cr10.50000.50000.50000.01345 (16)
Cr20.33118 (5)0.69446 (2)0.72774 (3)0.01687 (13)
S10.84672 (8)0.57936 (4)0.44691 (5)0.0271 (2)
S20.70040 (9)0.40980 (5)0.66907 (5)0.0416 (3)
S30.66310 (9)0.78060 (5)0.66180 (6)0.0403 (3)
S40.00734 (8)0.59999 (4)0.75949 (5)0.0320 (2)
S50.23280 (11)0.75385 (5)0.51398 (5)0.0525 (4)
S60.51532 (14)0.63383 (6)0.92336 (7)0.0704 (5)
S70.10788 (7)0.56430 (3)0.57327 (4)0.01877 (18)
S80.52484 (8)0.82411 (3)0.87334 (5)0.0240 (2)
S90.69825 (7)0.57774 (4)0.71490 (5)0.0243 (2)
S100.11920 (13)0.65903 (4)0.91109 (6)0.0534 (4)
S110.01903 (8)0.80693 (4)0.69178 (5)0.0337 (2)
S120.53845 (11)0.70282 (4)0.51768 (6)0.0426 (3)
S13A0.1106 (3)0.93726 (18)0.6103 (2)0.0593 (12)0.687 (10)
S13B0.1000 (5)0.9585 (3)0.5913 (3)0.0374 (16)0.313 (10)
S140.5988 (6)1.0131 (3)0.5268 (3)0.0742 (15)0.50
O10.21600 (19)0.56121 (10)0.61363 (12)0.0256 (6)
O20.4432 (2)0.83055 (10)0.81576 (13)0.0301 (6)
O30.5771 (2)0.56285 (10)0.70545 (13)0.0280 (6)
O40.1377 (3)0.71349 (12)0.89450 (16)0.0636 (11)
O50.1042 (2)0.81691 (10)0.70353 (14)0.0335 (7)
O60.5166 (3)0.65800 (10)0.56202 (15)0.0538 (10)
O70.0099 (3)0.92967 (16)0.62847 (19)0.0708 (12)
N10.4518 (2)0.90523 (12)0.70298 (15)0.0256 (7)
H1N0.45880.87570.73110.031*
N20.2500 (3)0.89679 (12)0.63576 (16)0.0309 (8)
H2A0.18610.87940.64640.037*
H2B0.23410.91670.59960.037*
N30.3992 (2)0.98174 (12)0.78516 (15)0.0255 (7)
H3A0.40181.01520.77320.031*
H3B0.36620.97960.82570.031*
N40.1596 (2)0.97955 (10)0.72457 (13)0.0161 (6)
H4N0.09990.96460.69640.019*
N50.2204 (2)0.89140 (11)0.79258 (15)0.0241 (7)
H5A0.21050.85910.77700.029*
H5B0.26350.89020.83080.029*
N60.3308 (3)1.01571 (12)0.63761 (16)0.0309 (8)
H6A0.38441.03770.65370.037*
H6B0.34951.00540.59590.037*
N70.6399 (2)0.53819 (10)0.48058 (14)0.0178 (6)
N80.5834 (2)0.46113 (11)0.56943 (13)0.0177 (6)
N90.4580 (2)0.55280 (10)0.56899 (13)0.0165 (6)
H9A0.38270.55170.57540.025*
H9B0.47740.58400.55450.025*
H9C0.49530.54610.60770.025*
N100.4716 (3)0.73221 (11)0.70742 (14)0.0218 (6)
N110.1892 (2)0.65613 (11)0.74405 (14)0.0193 (6)
N120.2663 (2)0.72071 (11)0.64291 (14)0.0231 (7)
N130.4026 (2)0.66793 (11)0.81050 (14)0.0220 (7)
N140.3879 (2)0.63442 (11)0.67497 (14)0.0207 (6)
H14A0.43690.61620.70040.031*
H14B0.42320.64570.63850.031*
H14C0.32880.61460.66250.031*
N150.2674 (2)0.75427 (10)0.77962 (13)0.0177 (6)
H15A0.23170.74260.81580.027*
H15B0.21780.77160.75340.027*
H15C0.32450.77510.79250.027*
N160.392 (2)1.0079 (9)0.4612 (10)0.114 (9)0.50
C10.4527 (3)0.88644 (16)0.63489 (19)0.0324 (9)
H1A0.51520.86230.62950.039*
H1B0.46300.91480.60380.039*
C20.3426 (4)0.86090 (16)0.6210 (2)0.0373 (11)
H2C0.33760.85050.57410.045*
H2D0.33620.83040.64870.045*
C30.5415 (3)0.93959 (16)0.72333 (19)0.0306 (9)
H3C0.54850.96700.69060.037*
H3D0.61390.92130.72620.037*
C40.5138 (3)0.96112 (15)0.7895 (2)0.0314 (9)
H4A0.51840.93450.82360.038*
H4B0.56790.98810.80160.038*
C50.1172 (3)0.97132 (13)0.79187 (17)0.0192 (7)
H5C0.04170.98650.79570.023*
H5D0.16810.98750.82480.023*
C60.1115 (3)0.91536 (13)0.80462 (17)0.0199 (7)
H6C0.09020.90940.85090.024*
H6D0.05320.90010.77540.024*
C70.1692 (3)1.03318 (13)0.70640 (18)0.0239 (8)
H7A0.21791.05090.73910.029*
H7B0.09401.04910.70650.029*
C80.2187 (3)1.03785 (15)0.63842 (19)0.0321 (9)
H8A0.16941.02050.60570.038*
H8B0.22291.07390.62590.038*
C90.7253 (3)0.55551 (13)0.46626 (16)0.0173 (7)
C100.6314 (3)0.43966 (14)0.61159 (17)0.0207 (8)
C110.5507 (3)0.75268 (14)0.68755 (17)0.0232 (8)
C120.1079 (3)0.63266 (14)0.75061 (17)0.0227 (8)
C130.2537 (3)0.73456 (14)0.58939 (18)0.0229 (8)
C140.4489 (4)0.65331 (15)0.8572 (2)0.0323 (9)
C150.1477 (3)0.56222 (17)0.48878 (18)0.0347 (10)
H15D0.17850.52890.47870.052*
H15E0.20470.58810.48090.052*
H15F0.08160.56870.46040.052*
C160.0651 (3)0.62831 (14)0.5749 (2)0.0320 (9)
H16A0.04790.63800.62020.048*
H16B0.00190.63270.54660.048*
H16C0.12570.64970.55870.048*
C170.6303 (3)0.78206 (17)0.84638 (19)0.0354 (10)
H17A0.67140.79760.81030.053*
H17B0.68250.77470.88310.053*
H17C0.59530.75070.83080.053*
C180.4587 (3)0.78282 (16)0.9293 (2)0.0333 (9)
H18A0.39400.79980.94840.050*
H18B0.43330.75250.90580.050*
H18C0.51220.77340.96460.050*
C190.6980 (4)0.64204 (19)0.7345 (4)0.100 (3)
H19A0.66360.64680.77750.150*
H19B0.65480.66060.70080.150*
H19C0.77530.65470.73640.150*
C200.7537 (4)0.5805 (3)0.6345 (2)0.088 (2)
H20A0.74050.54830.61200.132*
H20B0.83460.58710.63770.132*
H20C0.71680.60760.60940.132*
C210.0235 (5)0.6549 (2)0.9361 (3)0.092 (2)
H21A0.07390.66190.89830.138*
H21B0.03660.67950.97100.138*
H21C0.03800.62090.95270.138*
C220.1829 (6)0.6484 (2)0.9897 (3)0.087 (2)
H22A0.26440.65270.98680.131*
H22B0.16630.61401.00420.131*
H22C0.15340.67251.02150.131*
C23A0.0318 (5)0.7965 (3)0.6057 (3)0.0453 (19)0.65
H23A0.00610.82660.58240.068*0.65
H23B0.11060.78990.59360.068*0.65
H23C0.01410.76760.59320.068*0.65
C24A0.0427 (6)0.7473 (3)0.7218 (5)0.067 (3)0.65
H24A0.02370.74660.76910.101*0.65
H24B0.00380.72280.69870.101*0.65
H24C0.12220.73870.71510.101*0.65
C23B0.0229 (13)0.7469 (6)0.6427 (8)0.061 (4)*0.35
H23D0.00180.75500.59750.092*0.35
H23E0.09890.73280.64240.092*0.35
H23F0.03000.72220.66150.092*0.35
C24B0.0647 (11)0.7730 (7)0.7657 (7)0.057 (5)0.35
H24D0.05930.79580.80370.086*0.35
H24E0.01690.74350.77370.086*0.35
H24F0.14280.76210.75920.086*0.35
C250.6848 (5)0.70103 (19)0.5048 (3)0.073 (2)
H25A0.72510.70780.54650.109*
H25B0.70610.66770.48840.109*
H25C0.70440.72670.47230.109*
C260.4929 (6)0.6836 (2)0.4377 (3)0.084 (2)
H26A0.41150.67820.43720.127*
H26B0.51130.70990.40570.127*
H26C0.53080.65220.42590.127*
C27A0.0992 (8)0.9734 (5)0.5386 (4)0.106 (5)0.687 (10)
H27A0.05700.95440.50580.159*0.687 (10)
H27B0.06001.00490.54900.159*0.687 (10)
H27C0.17450.98090.52080.159*0.687 (10)
C27B0.1905 (12)0.9106 (6)0.6212 (9)0.053 (5)0.313 (10)
H27D0.17200.87830.60070.080*0.313 (10)
H27E0.26840.91960.61000.080*0.313 (10)
H27F0.18120.90780.66920.080*0.313 (10)
C280.1568 (5)0.9918 (3)0.6584 (3)0.095 (3)
H28A0.15761.02190.63030.142*0.687 (10)
H28B0.10490.99700.69590.142*0.687 (10)
H28C0.23250.98560.67450.142*0.687 (10)
H28D0.18341.02320.64030.142*0.313 (10)
H28E0.09960.99830.69140.142*0.313 (10)
H28F0.21800.97410.67790.142*0.313 (10)
C290.4824 (13)1.0064 (6)0.4869 (6)0.051 (3)0.50
O1W0.2435 (10)0.9301 (5)0.4986 (5)0.135 (4)0.50
H1W0.29510.94710.47990.202*0.50
H2W0.21220.91220.46720.202*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0146 (2)0.0202 (2)0.0239 (2)0.00023 (18)0.00210 (17)0.00534 (18)
Cr10.0117 (4)0.0145 (4)0.0144 (4)0.0017 (3)0.0034 (3)0.0010 (3)
Cr20.0186 (3)0.0144 (3)0.0175 (3)0.0012 (2)0.0004 (2)0.0031 (2)
S10.0165 (5)0.0333 (5)0.0317 (5)0.0098 (4)0.0046 (4)0.0028 (4)
S20.0243 (5)0.0695 (8)0.0308 (6)0.0092 (5)0.0032 (4)0.0179 (5)
S30.0208 (5)0.0527 (7)0.0474 (7)0.0039 (5)0.0040 (5)0.0156 (5)
S40.0177 (5)0.0299 (5)0.0484 (7)0.0035 (4)0.0016 (4)0.0044 (5)
S50.0626 (8)0.0722 (9)0.0218 (6)0.0335 (7)0.0134 (5)0.0117 (5)
S60.0948 (12)0.0582 (9)0.0562 (9)0.0036 (8)0.0448 (8)0.0185 (7)
S70.0139 (4)0.0208 (4)0.0216 (4)0.0001 (3)0.0000 (3)0.0017 (3)
S80.0223 (5)0.0233 (5)0.0260 (5)0.0003 (4)0.0066 (4)0.0056 (4)
S90.0180 (4)0.0274 (5)0.0273 (5)0.0008 (4)0.0030 (4)0.0007 (4)
S100.0944 (11)0.0314 (6)0.0358 (7)0.0011 (6)0.0315 (7)0.0065 (5)
S110.0220 (5)0.0359 (6)0.0429 (6)0.0041 (4)0.0056 (4)0.0031 (5)
S120.0632 (8)0.0174 (5)0.0487 (7)0.0048 (5)0.0359 (6)0.0038 (5)
S13A0.0429 (16)0.063 (2)0.071 (2)0.0104 (17)0.0320 (15)0.0288 (17)
S13B0.039 (2)0.041 (3)0.032 (3)0.007 (2)0.0019 (19)0.005 (2)
S140.059 (3)0.117 (4)0.046 (2)0.031 (3)0.009 (2)0.010 (2)
O10.0159 (12)0.0334 (15)0.0271 (14)0.0012 (11)0.0061 (10)0.0061 (11)
O20.0298 (15)0.0218 (14)0.0381 (16)0.0051 (12)0.0125 (12)0.0027 (12)
O30.0160 (12)0.0299 (15)0.0384 (16)0.0035 (11)0.0046 (11)0.0002 (12)
O40.111 (3)0.0321 (18)0.049 (2)0.001 (2)0.048 (2)0.0074 (15)
O50.0248 (15)0.0285 (15)0.0467 (17)0.0006 (12)0.0103 (13)0.0022 (13)
O60.093 (3)0.0193 (15)0.051 (2)0.0100 (16)0.0495 (19)0.0043 (14)
O70.0366 (19)0.093 (3)0.082 (3)0.016 (2)0.0264 (18)0.048 (2)
N10.0202 (16)0.0220 (17)0.0349 (19)0.0049 (13)0.0060 (14)0.0003 (14)
N20.0299 (18)0.0311 (19)0.0318 (19)0.0000 (15)0.0010 (15)0.0044 (15)
N30.0216 (16)0.0242 (17)0.0307 (18)0.0045 (13)0.0027 (13)0.0011 (14)
N40.0154 (14)0.0153 (14)0.0177 (15)0.0026 (11)0.0010 (11)0.0015 (11)
N50.0233 (16)0.0169 (15)0.0320 (18)0.0022 (13)0.0042 (14)0.0003 (13)
N60.0262 (18)0.0312 (19)0.0356 (19)0.0032 (15)0.0086 (15)0.0006 (15)
N70.0153 (15)0.0177 (15)0.0206 (15)0.0043 (12)0.0053 (12)0.0000 (12)
N80.0147 (14)0.0248 (16)0.0137 (14)0.0027 (12)0.0023 (12)0.0039 (12)
N90.0158 (14)0.0174 (15)0.0166 (15)0.0021 (12)0.0038 (11)0.0017 (11)
N100.0263 (16)0.0189 (16)0.0199 (16)0.0012 (13)0.0030 (13)0.0009 (12)
N110.0183 (15)0.0208 (16)0.0192 (15)0.0003 (12)0.0069 (12)0.0050 (12)
N120.0241 (16)0.0236 (17)0.0214 (17)0.0008 (13)0.0030 (13)0.0026 (13)
N130.0259 (17)0.0210 (16)0.0190 (16)0.0011 (13)0.0035 (13)0.0000 (12)
N140.0228 (16)0.0175 (15)0.0220 (16)0.0013 (13)0.0021 (12)0.0036 (12)
N150.0203 (15)0.0158 (14)0.0169 (15)0.0033 (12)0.0004 (12)0.0030 (11)
N160.057 (9)0.17 (2)0.112 (14)0.046 (13)0.032 (8)0.009 (12)
C10.035 (2)0.032 (2)0.030 (2)0.0081 (19)0.0111 (18)0.0002 (17)
C20.052 (3)0.030 (2)0.031 (2)0.001 (2)0.013 (2)0.0166 (18)
C30.0195 (19)0.037 (2)0.035 (2)0.0050 (17)0.0014 (16)0.0052 (18)
C40.0170 (19)0.028 (2)0.049 (3)0.0006 (16)0.0048 (17)0.0008 (19)
C50.0107 (16)0.0172 (17)0.030 (2)0.0013 (14)0.0071 (14)0.0027 (15)
C60.0189 (18)0.0231 (19)0.0181 (18)0.0018 (15)0.0063 (14)0.0030 (14)
C70.0238 (19)0.0178 (18)0.030 (2)0.0031 (15)0.0038 (16)0.0015 (15)
C80.040 (2)0.026 (2)0.030 (2)0.0015 (18)0.0015 (18)0.0167 (17)
C90.0210 (18)0.0167 (17)0.0138 (17)0.0050 (15)0.0032 (14)0.0043 (13)
C100.0174 (17)0.0264 (19)0.0185 (19)0.0066 (15)0.0063 (14)0.0065 (15)
C110.025 (2)0.025 (2)0.0201 (19)0.0000 (16)0.0038 (15)0.0050 (15)
C120.024 (2)0.0211 (19)0.023 (2)0.0090 (16)0.0012 (15)0.0034 (15)
C130.0180 (18)0.026 (2)0.024 (2)0.0084 (15)0.0009 (15)0.0051 (16)
C140.038 (2)0.023 (2)0.036 (2)0.0041 (18)0.0071 (19)0.0039 (17)
C150.028 (2)0.056 (3)0.019 (2)0.016 (2)0.0031 (16)0.0029 (18)
C160.038 (2)0.021 (2)0.037 (2)0.0070 (18)0.0115 (18)0.0097 (17)
C170.030 (2)0.053 (3)0.024 (2)0.018 (2)0.0010 (17)0.0004 (19)
C180.025 (2)0.037 (2)0.038 (2)0.0025 (18)0.0002 (18)0.0002 (19)
C190.030 (3)0.030 (3)0.240 (9)0.004 (2)0.011 (4)0.045 (4)
C200.031 (3)0.192 (8)0.041 (3)0.045 (4)0.006 (2)0.010 (4)
C210.104 (5)0.073 (5)0.102 (5)0.010 (4)0.067 (4)0.012 (4)
C220.158 (7)0.064 (4)0.039 (3)0.013 (4)0.009 (4)0.007 (3)
C23A0.029 (4)0.071 (5)0.036 (4)0.006 (4)0.008 (3)0.020 (4)
C24A0.027 (4)0.059 (6)0.113 (8)0.019 (4)0.029 (5)0.040 (5)
C24B0.030 (7)0.085 (12)0.057 (10)0.009 (8)0.011 (7)0.034 (9)
C250.075 (4)0.040 (3)0.106 (5)0.022 (3)0.065 (4)0.025 (3)
C260.150 (7)0.052 (4)0.053 (4)0.032 (4)0.041 (4)0.018 (3)
C27A0.097 (8)0.193 (13)0.028 (5)0.084 (8)0.003 (4)0.003 (6)
C27B0.018 (8)0.050 (10)0.091 (13)0.014 (7)0.018 (8)0.012 (9)
C280.057 (4)0.154 (7)0.072 (4)0.039 (4)0.019 (3)0.065 (4)
C290.056 (10)0.070 (10)0.026 (8)0.002 (7)0.007 (7)0.006 (6)
O1W0.173 (12)0.150 (11)0.079 (7)0.038 (9)0.030 (7)0.028 (7)
Geometric parameters (Å, º) top
Cu1—N12.016 (3)N14—H14C0.9101
Cu1—N42.018 (3)N15—H15A0.9101
Cu1—N22.079 (3)N15—H15B0.9099
Cu1—N32.100 (3)N15—H15C0.9099
Cu1—N52.295 (3)N16—C291.19 (2)
Cu1—N62.553 (3)C1—C21.497 (6)
Cr1—N8i1.993 (3)C1—H1A0.9900
Cr1—N81.993 (3)C1—H1B0.9900
Cr1—N71.997 (3)C2—H2C0.9900
Cr1—N7i1.997 (3)C2—H2D0.9900
Cr1—N92.049 (3)C3—C41.501 (6)
Cr1—N9i2.049 (3)C3—H3C0.9900
Cr2—N131.993 (3)C3—H3D0.9900
Cr2—N121.996 (3)C4—H4A0.9900
Cr2—N102.000 (3)C4—H4B0.9900
Cr2—N112.007 (3)C5—C61.509 (5)
Cr2—N142.042 (3)C5—H5C0.9900
Cr2—N152.059 (3)C5—H5D0.9900
S1—C91.634 (4)C6—H6C0.9900
S2—C101.618 (4)C6—H6D0.9900
S3—C111.627 (4)C7—C81.516 (5)
S4—C121.637 (4)C7—H7A0.9900
S5—C131.626 (4)C7—H7B0.9900
S6—C141.626 (4)C8—H8A0.9900
S7—O11.513 (2)C8—H8B0.9900
S7—C161.774 (4)C15—H15D0.9800
S7—C151.788 (4)C15—H15E0.9801
S8—O21.512 (3)C15—H15F0.9800
S8—C181.774 (4)C16—H16A0.9798
S8—C171.775 (4)C16—H16B0.9800
S9—O31.505 (3)C16—H16C0.9801
S9—C191.752 (5)C17—H17A0.9800
S9—C201.773 (5)C17—H17B0.9800
S10—O41.501 (3)C17—H17C0.9800
S10—C221.773 (6)C18—H18A0.9800
S10—C211.787 (6)C18—H18B0.9800
S11—O51.505 (3)C18—H18C0.9799
S11—C24A1.720 (8)C19—H19A0.9798
S11—C23A1.771 (6)C19—H19B0.9800
S11—C24B1.840 (16)C19—H19C0.9800
S11—C23B1.878 (15)C20—H20A0.9799
S12—O61.517 (3)C20—H20B0.9800
S12—C251.770 (5)C20—H20C0.9799
S12—C261.774 (6)C21—H21A0.9800
S13A—O71.488 (4)C21—H21B0.9801
S13A—C27A1.749 (12)C21—H21C0.9799
S13A—C281.835 (6)C22—H22A0.9800
S13A—H27D1.7359C22—H22B0.9801
S13A—H27F1.6703C22—H22C0.9799
S13B—O71.680 (8)C23A—H23A0.9800
S13B—C281.769 (8)C23A—H23B0.9800
S13B—C27B1.780 (16)C23A—H23C0.9801
S14—C291.599 (16)C23A—H23D1.1714
N1—C31.457 (5)C24A—H24A0.9798
N1—C11.468 (5)C24A—H24B0.9800
N1—H1N0.9718C24A—H24C0.9800
N2—C21.493 (5)C23B—H23D0.9800
N2—H2A0.9200C23B—H23E0.9801
N2—H2B0.9200C23B—H23F0.9801
N3—C41.472 (5)C24B—H24D0.9798
N3—H3A0.9200C24B—H24E0.9800
N3—H3B0.9200C24B—H24F0.9801
N4—C71.475 (4)C25—H25A0.9800
N4—C51.481 (4)C25—H25B0.9800
N4—H4N0.9853C25—H25C0.9801
N5—C61.470 (4)C26—H26A0.9800
N5—H5A0.9200C26—H26B0.9798
N5—H5B0.9200C26—H26C0.9801
N6—C81.459 (5)C27A—H27A0.9800
N6—H6A0.9200C27A—H27B0.9801
N6—H6B0.9200C27A—H27C0.9801
N7—C91.158 (4)C27B—H27D0.9799
N8—C101.167 (4)C27B—H27E0.9800
N9—H9A0.9099C27B—H27F0.9801
N9—H9B0.9099C28—H28A0.9800
N9—H9C0.9099C28—H28B0.9800
N10—C111.167 (4)C28—H28C0.9800
N11—C121.162 (4)C28—H28D0.9603
N12—C131.152 (4)C28—H28E0.9600
N13—C141.153 (5)C28—H28F0.9601
N14—H14A0.9100O1W—H1W0.8575
N14—H14B0.9099O1W—H2W0.8710
N1—Cu1—N4177.20 (12)C4—C3—H3C110.0
N1—Cu1—N284.23 (13)N1—C3—H3D110.0
N4—Cu1—N296.26 (12)C4—C3—H3D110.0
N1—Cu1—N382.28 (12)H3C—C3—H3D108.4
N4—Cu1—N396.95 (12)N3—C4—C3108.1 (3)
N2—Cu1—N3165.45 (12)N3—C4—H4A110.1
N1—Cu1—N5101.97 (12)C3—C4—H4A110.1
N4—Cu1—N580.75 (11)N3—C4—H4B110.1
N2—Cu1—N594.29 (12)C3—C4—H4B110.1
N3—Cu1—N593.81 (11)H4A—C4—H4B108.4
N1—Cu1—N699.85 (12)N4—C5—C6108.7 (3)
N4—Cu1—N677.40 (10)N4—C5—H5C110.0
N2—Cu1—N690.22 (12)C6—C5—H5C110.0
N3—Cu1—N686.75 (12)N4—C5—H5D109.9
N5—Cu1—N6158.05 (10)C6—C5—H5D109.9
N8i—Cr1—N8180.00 (11)H5C—C5—H5D108.3
N8i—Cr1—N790.19 (11)N5—C6—C5110.7 (3)
N8—Cr1—N789.81 (11)N5—C6—H6C109.5
N8i—Cr1—N7i89.81 (11)C5—C6—H6C109.5
N8—Cr1—N7i90.19 (11)N5—C6—H6D109.5
N7—Cr1—N7i180.00 (14)C5—C6—H6D109.5
N8i—Cr1—N990.18 (11)H6C—C6—H6D108.1
N8—Cr1—N989.82 (11)N4—C7—C8109.9 (3)
N7—Cr1—N990.27 (11)N4—C7—H7A109.7
N7i—Cr1—N989.73 (11)C8—C7—H7A109.7
N8i—Cr1—N9i89.82 (11)N4—C7—H7B109.7
N8—Cr1—N9i90.18 (11)C8—C7—H7B109.7
N7—Cr1—N9i89.73 (11)H7A—C7—H7B108.2
N7i—Cr1—N9i90.27 (11)N6—C8—C7110.6 (3)
N9—Cr1—N9i180.00 (11)N6—C8—H8A109.5
N13—Cr2—N12177.44 (12)C7—C8—H8A109.5
N13—Cr2—N1090.40 (12)N6—C8—H8B109.5
N12—Cr2—N1087.57 (12)C7—C8—H8B109.5
N13—Cr2—N1191.60 (12)H8A—C8—H8B108.1
N12—Cr2—N1190.40 (12)N7—C9—S1179.1 (4)
N10—Cr2—N11177.59 (12)N8—C10—S2178.8 (3)
N13—Cr2—N1491.47 (12)N10—C11—S3178.2 (3)
N12—Cr2—N1486.96 (12)N11—C12—S4179.5 (4)
N10—Cr2—N1489.72 (12)N12—C13—S5178.7 (3)
N11—Cr2—N1488.88 (11)N13—C14—S6178.8 (4)
N13—Cr2—N1589.86 (11)S7—C15—H15D109.6
N12—Cr2—N1591.77 (12)S7—C15—H15E109.5
N10—Cr2—N1592.23 (12)H15D—C15—H15E109.5
N11—Cr2—N1589.12 (11)S7—C15—H15F109.3
N14—Cr2—N15177.62 (12)H15D—C15—H15F109.5
O1—S7—C16106.46 (17)H15E—C15—H15F109.5
O1—S7—C15106.01 (17)S7—C16—H16A109.5
C16—S7—C1597.4 (2)S7—C16—H16B109.5
O2—S8—C18106.05 (18)H16A—C16—H16B109.5
O2—S8—C17106.28 (17)S7—C16—H16C109.5
C18—S8—C1797.8 (2)H16A—C16—H16C109.5
O3—S9—C19106.2 (2)H16B—C16—H16C109.5
O3—S9—C20105.6 (2)S8—C17—H17A109.4
C19—S9—C2099.9 (4)S8—C17—H17B109.5
O4—S10—C22107.0 (3)H17A—C17—H17B109.5
O4—S10—C21105.6 (3)S8—C17—H17C109.5
C22—S10—C2197.3 (3)H17A—C17—H17C109.5
O5—S11—C24A105.8 (3)H17B—C17—H17C109.5
O5—S11—C23A104.2 (2)S8—C18—H18A109.4
C24A—S11—C23A101.2 (5)S8—C18—H18B109.5
O5—S11—C24B105.2 (5)H18A—C18—H18B109.5
O5—S11—C23B104.2 (5)S8—C18—H18C109.5
C24B—S11—C23B90.7 (7)H18A—C18—H18C109.5
O6—S12—C25104.4 (2)H18B—C18—H18C109.5
O6—S12—C26105.3 (2)S9—C19—H19A109.3
C25—S12—C2698.0 (3)S9—C19—H19B109.5
O7—S13A—C27A100.8 (5)H19A—C19—H19B109.5
O7—S13A—C28105.9 (3)S9—C19—H19C109.6
C27A—S13A—C2892.2 (5)H19A—C19—H19C109.5
O7—S13B—C28100.9 (4)H19B—C19—H19C109.5
O7—S13B—C27B89.7 (6)S9—C20—H20A109.5
C28—S13B—C27B81.4 (7)S9—C20—H20B109.3
C3—N1—C1117.3 (3)H20A—C20—H20B109.5
C3—N1—Cu1107.9 (2)S9—C20—H20C109.6
C1—N1—Cu1107.2 (2)H20A—C20—H20C109.5
C3—N1—H1N106.6H20B—C20—H20C109.5
C1—N1—H1N106.0S10—C21—H21A109.7
Cu1—N1—H1N111.8S10—C21—H21B109.4
C2—N2—Cu1107.2 (2)H21A—C21—H21B109.5
C2—N2—H2A110.3S10—C21—H21C109.3
Cu1—N2—H2A110.3H21A—C21—H21C109.5
C2—N2—H2B110.3H21B—C21—H21C109.5
Cu1—N2—H2B110.3S10—C22—H22A109.4
H2A—N2—H2B108.5S10—C22—H22B109.4
C4—N3—Cu1109.5 (2)H22A—C22—H22B109.5
C4—N3—H3A109.8S10—C22—H22C109.5
Cu1—N3—H3A109.8H22A—C22—H22C109.5
C4—N3—H3B109.8H22B—C22—H22C109.5
Cu1—N3—H3B109.8S11—C23A—H23A109.0
H3A—N3—H3B108.2S11—C23A—H23B109.5
C7—N4—C5113.7 (3)H23A—C23A—H23B109.5
C7—N4—Cu1113.3 (2)S11—C23A—H23C109.9
C5—N4—Cu1108.8 (2)H23A—C23A—H23C109.5
C7—N4—H4N107.6H23B—C23A—H23C109.5
C5—N4—H4N102.6S11—C23A—H23D105.4
Cu1—N4—H4N110.2S11—C24A—H24A109.1
C6—N5—Cu1105.4 (2)S11—C24A—H24B110.0
C6—N5—H5A110.7H24A—C24A—H24B109.5
Cu1—N5—H5A110.7S11—C24A—H24C109.3
C6—N5—H5B110.7H24A—C24A—H24C109.5
Cu1—N5—H5B110.7H24B—C24A—H24C109.5
H5A—N5—H5B108.8S11—C23B—H23D107.8
C8—N6—Cu1100.4 (2)S11—C23B—H23E109.9
C8—N6—H6A111.7H23D—C23B—H23E109.5
Cu1—N6—H6A111.7S11—C23B—H23F110.7
C8—N6—H6B111.7H23D—C23B—H23F109.5
Cu1—N6—H6B111.7H23E—C23B—H23F109.5
H6A—N6—H6B109.5S11—C24B—H24D108.8
C9—N7—Cr1172.5 (3)S11—C24B—H24E110.2
C10—N8—Cr1177.7 (3)H24D—C24B—H24E109.5
Cr1—N9—H9A109.4S11—C24B—H24F109.4
Cr1—N9—H9B109.5H24D—C24B—H24F109.5
H9A—N9—H9B109.5H24E—C24B—H24F109.5
Cr1—N9—H9C109.5S12—C25—H25A109.4
H9A—N9—H9C109.5S12—C25—H25B109.7
H9B—N9—H9C109.5H25A—C25—H25B109.5
C11—N10—Cr2171.6 (3)S12—C25—H25C109.3
C12—N11—Cr2176.6 (3)H25A—C25—H25C109.5
C13—N12—Cr2164.3 (3)H25B—C25—H25C109.5
C14—N13—Cr2176.6 (3)S12—C26—H26A109.5
Cr2—N14—H14A109.5S12—C26—H26B109.3
Cr2—N14—H14B109.4H26A—C26—H26B109.5
H14A—N14—H14B109.5S12—C26—H26C109.6
Cr2—N14—H14C109.5H26A—C26—H26C109.5
H14A—N14—H14C109.5H26B—C26—H26C109.5
H14B—N14—H14C109.5S13A—C27A—H27A109.5
Cr2—N15—H15A109.5S13A—C27A—H27B109.6
Cr2—N15—H15B109.5H27A—C27A—H27B109.5
H15A—N15—H15B109.5S13A—C27A—H27C109.3
Cr2—N15—H15C109.4H27A—C27A—H27C109.5
H15A—N15—H15C109.5H27B—C27A—H27C109.5
H15B—N15—H15C109.5S13B—C27B—H27D109.6
S14ii—N16—C2969 (3)S13B—C27B—H27E109.0
S14ii—N16—C29ii57 (2)H27D—C27B—H27E109.5
C29—N16—C29ii13.6 (12)S13B—C27B—H27F109.8
N1—C1—C2107.9 (3)H27D—C27B—H27F109.5
N1—C1—H1A110.1H27E—C27B—H27F109.5
C2—C1—H1A110.1S13A—C28—H28A109.5
N1—C1—H1B110.1S13A—C28—H28B109.5
C2—C1—H1B110.1H28A—C28—H28B109.5
H1A—C1—H1B108.4S13A—C28—H28C109.5
N2—C2—C1108.7 (3)H28A—C28—H28C109.5
N2—C2—H2C109.9H28B—C28—H28C109.5
C1—C2—H2C109.9S13B—C28—H28E110.4
N2—C2—H2D109.9H28D—C28—H28E109.5
C1—C2—H2D109.9H28D—C28—H28F109.5
H2C—C2—H2D108.3H28E—C28—H28F109.5
N1—C3—C4108.5 (3)N16—C29—S14170.5 (19)
N1—C3—H3C110.0H1W—O1W—H2W105.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N160.862.022.83 (3)157
N1—H1N···O20.972.103.029 (4)158
N2—H2A···O50.922.263.083 (4)149
N2—H2B···O1W0.922.092.919 (10)150
N4—H4N···O70.991.962.928 (4)167
N5—H5A···O50.922.242.996 (4)140
N6—H6B···S14ii0.922.623.539 (6)174
N9—H9A···O10.912.163.049 (3)165
N9—H9B···O60.912.022.881 (4)157
N9—H9C···O30.912.233.093 (4)157
N14—H14A···O30.912.193.001 (4)148
N14—H14B···O60.911.962.853 (4)169
N14—H14C···O10.912.183.066 (4)166
N15—H15A···O40.912.123.023 (4)175
N15—H15B···O50.912.062.965 (4)173
N15—H15C···O20.912.092.992 (4)172
O1W—H1W···N160.862.022.83 (3)157
N3—H3A···S4iii0.922.673.518 (3)154
N5—H5B···S1iv0.922.663.529 (3)158
O1W—H2W···S6v0.872.773.523 (11)145
N6—H6A···S4iii0.922.803.686 (4)161
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x1/2, y+3/2, z+1/2; (v) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4H13N3)2]2[Cr(NCS)4(NH3)2]3(NCS)·14C2H6OS·H2O
Mr2665.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.9110 (2), 26.5332 (5), 20.2756 (4)
β (°) 91.256 (2)
V3)6406.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.60, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
32460, 14316, 9143
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.08
No. of reflections14316
No. of parameters660
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.83

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N160.862.022.83 (3)157
N1—H1N···O20.972.103.029 (4)158
N2—H2A···O50.922.263.083 (4)149
N2—H2B···O1W0.922.092.919 (10)150
N4—H4N···O70.991.962.928 (4)167
N5—H5A···O50.922.242.996 (4)140
N6—H6B···S14i0.922.623.539 (6)174
N9—H9A···O10.912.163.049 (3)165
N9—H9B···O60.912.022.881 (4)157
N9—H9C···O30.912.233.093 (4)157
N14—H14A···O30.912.193.001 (4)148
N14—H14B···O60.911.962.853 (4)169
N14—H14C···O10.912.183.066 (4)166
N15—H15A···O40.912.123.023 (4)175
N15—H15B···O50.912.062.965 (4)173
N15—H15C···O20.912.092.992 (4)172
O1W—H1W···N160.862.022.83 (3)157
N3—H3A···S4ii0.922.673.518 (3)154
N5—H5B···S1iii0.922.663.529 (3)158
O1W—H2W···S6iv0.872.773.523 (11)145
N6—H6A···S4ii0.922.803.686 (4)161
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x1/2, y+3/2, z+1/2; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the Ukrainian State Fund for Fundamental Researchers (SFFR) for financial support of the Research Program (Chemistry).

References

First citationCherkasova, T. G. & Gorunova, I. P. (2003). Zh. Neorg. Khim. 48, 611–615.  CAS Google Scholar
First citationCucos, A., Avarvari, N., Andruh, M., Journaux, Y., Muller, A. & Schmidtmann, M. (2006). Eur. J. Inorg. Chem. pp. 903–907.  Web of Science CSD CrossRef Google Scholar
First citationKolotilov, S. V., Cador, O., Gavrilenko, K. S., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Eur. J. Inorg. Chem. 8, 1255–1266.  Web of Science CSD CrossRef Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, pp. 161–163.  CSD CrossRef Web of Science Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43 7868–7876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, pp. 263–266.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L., Chen, W., Xu, Y., Wang, Z., Zhong, Z. J. & You, X.-Z. (2001). Polyhedron, pp. 2033–2036.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1023-m1024
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds