organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1903-o1904

4,4′-Di-tert-butyl-2,2′-dipyridinium dichloride

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 24 June 2011; accepted 28 June 2011; online 6 July 2011)

In the title compound, C18H26N22+·2Cl, the complete dication is generated by crystallographic inversion symmetry; both N atoms are protonated and engaged in strong and highly directional N—H⋯Cl hydrogen bonds. Additional weak C—H⋯Cl contacts promote the formation of a tape along ca. [110]. The crystal structure can be described by the parallel packing of these tapes. The crystal studied was a non-merohedral twin with twin law [−1 0 0, 0 −1 0, −0.887 0.179 1] and the final BASF parameter refining to 0.026 (2) .

Related literature

For metallic complexes of 4,4′-di-tert-butyl-2,2′-dipyridyl, see: Momeni et al. (2010[Momeni, B. Z., Shahbazi, S. & Khavasi, H. R. (2010). Polyhedron, 29, 1393-1398.]); Li et al. (2005[Li, Y., Banerjee, S. & Odom, A. L. (2005). Organometallics, 24, 3272-3278.]). For related organic crystals from our research groups, see: Amarante, Figueiredo et al. (2009[Amarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o2047.]); Amarante, Gonçalves & Almeida Paz (2009[Amarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o1962-o1963.]); Amarante, Paz et al. (2009[Amarante, T. R., Paz, F. A. A., Gago, S., Gonçalves, I. S., Pillinger, M., Rodrigues, A. E. & Abrantes, M. (2009). Molecules, 14, 3610-3620.]); Batsanov et al. (2007[Batsanov, A. S., Mkhalid, I. A. I. & Marder, T. B. (2007). Acta Cryst. E63, o1196-o1198.]); Coelho et al. (2007[Coelho, A. C., Gonçalves, I. S. & Almeida Paz, F. A. (2007). Acta Cryst. E63, o1380-o1382.]); Herrmann et al. (1990[Herrmann, W. A., Kuchler, J. G., Kiprof, P. & Riede, J. (1990). J. Organomet. Chem. 395, 55-67.]); Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.]); Paz et al. (2002[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.]). For graph-set notation, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the refinement, see: Cooper et al. (2002[Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26N22+·2Cl

  • Mr = 341.31

  • Triclinic, [P \overline 1]

  • a = 5.9017 (8) Å

  • b = 6.1949 (8) Å

  • c = 13.0758 (17) Å

  • α = 89.633 (8)°

  • β = 79.049 (7)°

  • γ = 75.915 (7)°

  • V = 454.84 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 150 K

  • 0.12 × 0.03 × 0.03 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.989

  • 14551 measured reflections

  • 2054 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.188

  • S = 1.25

  • 2054 reflections

  • 107 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.95 (1) 2.05 (2) 2.967 (4) 162 (5)
C1—H1A⋯Cl1i 0.95 2.70 3.479 (3) 140
C4—H4A⋯Cl1ii 0.95 2.61 3.543 (9) 166
Symmetry codes: (i) -x-1, -y, -z+2; (ii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,4'-Di-tert-butyl-2,2'-dipyridyl is a versatile N,N'-chelating organic ligand derived from the widely employed 2,2'-bipyridine molecule by the inclusion of two bulky t-butyl substituent groups at the 4 and 4' positions. A search in the Cambridge Structural Database (CSD, Version 5.32, November 2010 with three updates) (Allen, 2002) reveals that this molecule forms relatively stable complexes with a large range of metallic cations, including lanthanides, actinides and, mainly, d-block cations. Surprisingly, not many crystallographic reports are known in which 4,4'-di-tert-butyl-2,2'-dipyridyl is chelated to either s- or p-block cations: there is a single report in the literature of an organometallic complex with Na+ by Li et al. (2005), and another very recent with Sn4+ by Momeni et al. (2010). Concerning organic crystals, besides the crystal structure of 4,4'-di-tert-butyl-2,2'-dipyridyl which was recently reported by our group (Amarante & Figueiredo et al., 2009), there is a single crystallographic determination in which this molecule co-crystallizes with hexafluorobenzene (Batsanov et al., 2007). As a continuation of our on-going interest in organic crystals based on pyridine derivatives (Amarante & Gonçalves et al., 2009; Coelho et al., 2007; Paz & Klinowski, 2003; Paz et al., 2002), here we wish to report the crystal structure of the title compound (I) at 150 K, which is an organic salt with chloride anions. Noteworthy, a search in the literature reveals the existence of only one other salt of protonated 4,4'-di-tert-butyl-2,2'-dipyridyl moieties, being reported by Herrmann et al. (1990) and using perrhenate as the charge-balancing anion.

The asymmetric unit of the title compound is composed of half of a 4,4'-di-tert-butyl-2,2'-dipyridinium cation (the molecule has its geometrical centre located over an inversion center) and by a single chloride anion strongly hydrogen bonded to the neighbouring N+—H group as depicted in Figure 1. As a consequence, the 4,4'-di-tert-butyl-2,2'-dipyridinium cation adopts a typical trans conformation around the central C—C bond, very much similar to that observed by us in the crystal structure of the molecule itself (Amarante & Figueiredo et al., 2009) and also by Batsanov et al. (2007) in the co-crystal with hexafluorobenzene. This conformation permits a significant reduction of the overall steric repulsion due to the large tert-butyl substituent groups.

Each diprotonated organic cation is engaged in a strong and highly directional N+—H···Cl- hydrogen bonding interaction with the charge-balancing anions (Table 1 and Figures 1 and 2). These intermolecular connections are further strengthened by the presence of a number of weak C—H···Cl contacts as depicted in Figure 2 (see geometrical details in Table 2), leading to the formation of a supramolecular hydrogen-bonded tape composed of alternating R12(7) and R24(10) graph set motifs (Grell et al., 1999). The crystal structure of the title compound is obtained by the close packing of these supramolecular tapes as shown in Figure 3.

Related literature top

For metallic complexes of 4,4'-di-tert-butyl-2,2'-dipyridyl, see: Momeni et al. (2010); Li et al. (2005). For related organic crystals containing 4,4'-di-tert-butyl-2,2'-dipyridyl, see: Amarante, Figueiredo et al. (2009); Amarante, Gonçalves & Almeida Paz (2009); Amarante, Paz et al. (2009); Batsanov et al. (2007); Coelho et al. (2007); Herrmann et al. (1990); Paz & Klinowski (2003); Paz et al. (2002). For graph-set notation, see: Grell et al. (1999). For a description of the Cambridge Structural Database, see: Allen (2002). For the refinement, see: Cooper et al. (2002).

Experimental top

Irregular, poorly-formed crystals of the title compound were isolated as a minor secondary product during the preparation of the oxodiperoxo complex MoO(O2)2(tbbpy) (where tbbpy stands for 4,4'-di-tert-butyl-2,2'-dipyridyl) previously reported by our group (Amarante & Paz et al., 2009).

Refinement top

Hydrogen atoms bound to carbon have been placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H distances of 0.95 Å (aromatic C—H) and 0.98 Å (terminal —CH3 groups). The hydrogen atom bound to the nitrogen atom was directly located from difference Fourier maps and was included in the final structural model with the N—H distance restrained to 0.95 Å. The isotropic displacement parameters for these hydrogen atoms were fixed at 1.2 (for the former family of hydrogen atoms) or 1.5×Ueq (for the two latter families) of the respective parent atoms.

The final structural refinement was performed by using the twin law [-1 0 0, 0 - 1 0, -0.887 0.179 1] (Cooper et al., 2002) with the final BASF parameter refining to 0.026 (2).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of the molecular units composing the crystal structure of the title compound. Non-hydrogen atoms are represented as displacement ellipsoids drawn at the 70% probability level. Hydrogen atoms are depicted as small spheres with arbitrary radii. The atomic labeling for all non-hydrogen atoms composing the asymmetric unit is provided.
[Figure 2] Fig. 2. Interconnection of adjacent chloride anions and protonated organic molecules via N—H···Cl and C—H···Cl contacts (green and brown dashed lines, respectively) leading to the formation of a one-dimensional supramolecular tape. For geometrical details on the represented supramolecular contacts see Tables 1 and 2.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed in perspective along the [100] direction of the unit cell. N—H···Cl and C—H···Cl intermolecular interactions are represented as green and brown dashed lines, respectively.
4,4'-Di-tert-butyl-2,2'-dipyridinium dichloride top
Crystal data top
C18H26N22+·2ClZ = 1
Mr = 341.31F(000) = 182
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9017 (8) ÅCell parameters from 3784 reflections
b = 6.1949 (8) Åθ = 3.2–28.8°
c = 13.0758 (17) ŵ = 0.36 mm1
α = 89.633 (8)°T = 150 K
β = 79.049 (7)°Block, colourless
γ = 75.915 (7)°0.12 × 0.03 × 0.03 mm
V = 454.84 (10) Å3
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
2054 independent reflections
Radiation source: fine-focus sealed tube1654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω and ϕ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 77
Tmin = 0.959, Tmax = 0.989k = 88
14551 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.P)2 + 2.3813P]
where P = (Fo2 + 2Fc2)/3
2054 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.72 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
C18H26N22+·2Clγ = 75.915 (7)°
Mr = 341.31V = 454.84 (10) Å3
Triclinic, P1Z = 1
a = 5.9017 (8) ÅMo Kα radiation
b = 6.1949 (8) ŵ = 0.36 mm1
c = 13.0758 (17) ÅT = 150 K
α = 89.633 (8)°0.12 × 0.03 × 0.03 mm
β = 79.049 (7)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
2054 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1654 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.989Rint = 0.074
14551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0831 restraint
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.25Δρmax = 0.72 e Å3
2054 reflectionsΔρmin = 0.39 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5222 (2)0.2342 (2)1.16162 (10)0.0234 (3)
N10.1611 (7)0.2931 (6)0.9791 (3)0.0167 (8)
H10.253 (8)0.281 (9)1.046 (2)0.025*
C10.1874 (8)0.1531 (8)0.9071 (4)0.0189 (10)
H1A0.29240.05890.92620.023*
C20.0648 (8)0.1433 (8)0.8057 (4)0.0195 (10)
H2A0.08320.04190.75550.023*
C30.0868 (8)0.2843 (7)0.7777 (4)0.0164 (9)
C40.1157 (8)0.4233 (8)0.8556 (4)0.0196 (10)
H4A0.22250.51660.83870.024*
C50.0083 (8)0.4275 (7)0.9569 (3)0.0150 (9)
C60.2115 (9)0.3004 (8)0.6655 (4)0.0186 (10)
C70.1739 (10)0.1275 (9)0.5916 (4)0.0295 (12)
H7A0.24020.02250.61340.044*
H7B0.25430.14590.52040.044*
H7C0.00310.14840.59350.044*
C80.4802 (10)0.2668 (10)0.6597 (4)0.0303 (12)
H8A0.50760.38040.70450.045*
H8B0.55810.28010.58760.045*
H8C0.54660.11850.68340.045*
C90.1040 (12)0.5355 (9)0.6314 (4)0.0358 (14)
H9A0.06900.55930.63960.054*
H9B0.17300.55000.55810.054*
H9C0.13960.64680.67460.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0211 (6)0.0222 (6)0.0284 (6)0.0127 (4)0.0011 (5)0.0006 (4)
N10.0168 (19)0.0172 (18)0.020 (2)0.0089 (15)0.0062 (15)0.0031 (15)
C10.018 (2)0.016 (2)0.027 (2)0.0082 (18)0.0080 (19)0.0013 (18)
C20.019 (2)0.014 (2)0.026 (3)0.0034 (18)0.0075 (19)0.0018 (18)
C30.014 (2)0.014 (2)0.020 (2)0.0001 (17)0.0051 (18)0.0012 (17)
C40.016 (2)0.022 (2)0.024 (2)0.0095 (19)0.0028 (19)0.0025 (19)
C50.012 (2)0.015 (2)0.021 (2)0.0048 (17)0.0073 (17)0.0014 (18)
C60.023 (2)0.017 (2)0.017 (2)0.0079 (19)0.0023 (19)0.0010 (17)
C70.034 (3)0.032 (3)0.021 (3)0.012 (2)0.002 (2)0.009 (2)
C80.023 (3)0.040 (3)0.028 (3)0.013 (2)0.000 (2)0.002 (2)
C90.052 (4)0.025 (3)0.022 (3)0.001 (3)0.001 (3)0.005 (2)
Geometric parameters (Å, º) top
N1—C11.340 (6)C6—C71.530 (7)
N1—C51.361 (5)C6—C81.536 (7)
N1—H10.952 (10)C6—C91.541 (7)
C1—C21.378 (7)C7—H7A0.9800
C1—H1A0.9500C7—H7B0.9800
C2—C31.396 (6)C7—H7C0.9800
C2—H2A0.9500C8—H8A0.9800
C3—C41.399 (6)C8—H8B0.9800
C3—C61.526 (6)C8—H8C0.9800
C4—C51.383 (6)C9—H9A0.9800
C4—H4A0.9500C9—H9B0.9800
C5—C5i1.478 (9)C9—H9C0.9800
C1—N1—C5122.0 (4)C3—C6—C9106.8 (4)
C1—N1—H1113 (3)C7—C6—C9109.1 (4)
C5—N1—H1125 (3)C8—C6—C9109.9 (4)
N1—C1—C2121.2 (4)C6—C7—H7A109.5
N1—C1—H1A119.4C6—C7—H7B109.5
C2—C1—H1A119.4H7A—C7—H7B109.5
C1—C2—C3119.1 (4)C6—C7—H7C109.5
C1—C2—H2A120.4H7A—C7—H7C109.5
C3—C2—H2A120.4H7B—C7—H7C109.5
C2—C3—C4118.1 (4)C6—C8—H8A109.5
C2—C3—C6122.7 (4)C6—C8—H8B109.5
C4—C3—C6119.1 (4)H8A—C8—H8B109.5
C5—C4—C3121.2 (4)C6—C8—H8C109.5
C5—C4—H4A119.4H8A—C8—H8C109.5
C3—C4—H4A119.4H8B—C8—H8C109.5
N1—C5—C4118.3 (4)C6—C9—H9A109.5
N1—C5—C5i117.1 (5)C6—C9—H9B109.5
C4—C5—C5i124.6 (5)H9A—C9—H9B109.5
C3—C6—C7112.4 (4)C6—C9—H9C109.5
C3—C6—C8110.2 (4)H9A—C9—H9C109.5
C7—C6—C8108.5 (4)H9B—C9—H9C109.5
C5—N1—C1—C21.8 (7)C3—C4—C5—N10.3 (7)
N1—C1—C2—C30.9 (7)C3—C4—C5—C5i178.7 (5)
C1—C2—C3—C42.8 (7)C2—C3—C6—C76.6 (6)
C1—C2—C3—C6174.2 (4)C4—C3—C6—C7176.5 (4)
C2—C3—C4—C52.2 (7)C2—C3—C6—C8127.7 (5)
C6—C3—C4—C5174.9 (4)C4—C3—C6—C855.4 (6)
C1—N1—C5—C42.4 (6)C2—C3—C6—C9113.0 (5)
C1—N1—C5—C5i179.1 (5)C4—C3—C6—C964.0 (6)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.95 (1)2.05 (2)2.967 (4)162 (5)
C1—H1A···Cl1ii0.952.703.479 (3)140
C4—H4A···Cl1i0.952.613.543 (9)166
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z+2.

Experimental details

Crystal data
Chemical formulaC18H26N22+·2Cl
Mr341.31
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.9017 (8), 6.1949 (8), 13.0758 (17)
α, β, γ (°)89.633 (8), 79.049 (7), 75.915 (7)
V3)454.84 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.12 × 0.03 × 0.03
Data collection
DiffractometerBruker X8 KappaCCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.959, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
14551, 2054, 1654
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.188, 1.25
No. of reflections2054
No. of parameters107
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.39

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.952 (10)2.05 (2)2.967 (4)162 (5)
C1—H1A···Cl1i0.952.703.479 (3)140
C4—H4A···Cl1ii0.952.613.543 (9)166
Symmetry codes: (i) x1, y, z+2; (ii) x, y+1, z+2.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for a PhD research grant No. SFRH/BD/64224/2009 (to TRA), and for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o2047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o1962–o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmarante, T. R., Paz, F. A. A., Gago, S., Gonçalves, I. S., Pillinger, M., Rodrigues, A. E. & Abrantes, M. (2009). Molecules, 14, 3610-3620.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBatsanov, A. S., Mkhalid, I. A. I. & Marder, T. B. (2007). Acta Cryst. E63, o1196–o1198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoelho, A. C., Gonçalves, I. S. & Almeida Paz, F. A. (2007). Acta Cryst. E63, o1380–o1382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHerrmann, W. A., Kuchler, J. G., Kiprof, P. & Riede, J. (1990). J. Organomet. Chem. 395, 55–67.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, Y., Banerjee, S. & Odom, A. L. (2005). Organometallics, 24, 3272–3278.  Web of Science CSD CrossRef CAS Google Scholar
First citationMomeni, B. Z., Shahbazi, S. & Khavasi, H. R. (2010). Polyhedron, 29, 1393–1398.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1903-o1904
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds