organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-3-(4-hy­dr­oxy­phen­yl)-1,3-thia­zolidin-4-one

aDepartment of Physics, Panimalar Institute of Technology, Chennai 602 103, India, bDepartment of Physics, SRM University, Kattankulathur Campus, Chennai, India, cDepartment of Chemistry, SRM University, Ramapuram Campus, Chennai 600 089, India, dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 25 June 2011; accepted 27 June 2011; online 6 July 2011)

In the title compound, C15H12BrNO2S, the dihedral angle between the two aromatic rings is 87.81 (8)°. The five-membered thia­zolidine ring has an envelope conformation, with the S atom displaced by 0.4545 (7) Å from the mean plane of the other four ring atoms. The crystal structure exhibits O—H⋯O, C—H⋯O, C—H⋯Br and C—H⋯ π inter­actions.

Related literature

For the biolgical activity of thia­zolidine derivatives, see: Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Jacop & Kutty (2004[Jacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76-79.]); Kalia et al. (2007[Kalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616-622.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]); Vigorita et al. (1992[Vigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893-906.]). For bond-length data see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Akkurt et al. (2010[Akkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1691-o1692.], 2011[Akkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011). Acta Cryst. E67, o914-o915.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrNO2S

  • Mr = 350.23

  • Orthorhombic, P b c a

  • a = 13.3367 (6) Å

  • b = 12.6292 (5) Å

  • c = 17.1230 (6) Å

  • V = 2884.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.00 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.467, Tmax = 0.586

  • 18957 measured reflections

  • 3617 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.02

  • 3617 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.94 2.758 (2) 175
C5—H5⋯O2ii 0.93 2.53 3.361 (3) 149
C12—H12⋯Br1iii 0.93 2.84 3.463 (2) 125
C15—H15⋯Cg2iv 0.93 2.94 3.775 (2) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiazolidine derivatives exhibit herbicidal (Chen et al., 2000; Vicentini et al., 1998), antineoplastic (Vigorita et al., 1992), hypolipidemic (Jacop & Kutty, 2004) and anti-inflammatory (Kalia et al., 2007) activities. We report here the crystal structure of the titled compound (I) (Fig. 1).

In the title compound (I), the bond lengths in the molecule are normal (Allen et al., 1987) and in a good agreement with those reported previously (Akkurt et al., 2010,2011). The dihedral angle between the benzene rings (C4—C9) and (C10—C15) is 87.81 (8)°. The five-membered thiazolidine ring (N1/C2/C1/S1/C3) has an envelope conformation, with the S atom displaced by 0.4545 (7) Å from the mean plane of the four other ring atoms. In the molecule, the absolute configuration at atom C3 is R configuration. The crystal structure exhibit weak O—H···O, C—H···O, C—H···Br and C—H··· π (Fig. 2 and Table 1) interactions. Cg2 is the centroid of C4-C9 ring.

Related literature top

For the biolgical activity of thiazolidine derivatives, see: Chen et al. (2000); Jacop & Kutty (2004); Kalia et al. (2007); Vicentini et al. (1998); Vigorita et al. (1992). For bond-length data see: Allen et al. (1987). For related structures, see: Akkurt et al. (2010); Akkurt et al. (2011).

Experimental top

About 5 mmol of 4-[(4-Bromobenzylidene)-amino]-phenol was taken in a round bottomed flask. To this 25 ml of dry benzene and 10 ml of mercapto acetic acid was added. The content of the flask were refluxed on the water bath for 12 hrs, cooled and poured into water. The upper organic layer was washed successively with aqueous sodium bicarbonate and water and dried with anhydrous sodium sulfate. The solvent was removed by distillation under reduced pressure. The residue on recrystallization from ethanol several times, yielded diffraction quality crystals.Yield: 62%.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O) for OH.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. H-bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.
2-(4-Bromophenyl)-3-(4-hydroxyphenyl)-1,3-thiazolidin-4-one top
Crystal data top
C15H12BrNO2SF(000) = 1408
Mr = 350.23Dx = 1.613 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4654 reflections
a = 13.3367 (6) Åθ = 2.4–23.8°
b = 12.6292 (5) ŵ = 3.00 mm1
c = 17.1230 (6) ÅT = 295 K
V = 2884.1 (2) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3617 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.467, Tmax = 0.586k = 1616
18957 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.5996P]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H12BrNO2SV = 2884.1 (2) Å3
Mr = 350.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.3367 (6) ŵ = 3.00 mm1
b = 12.6292 (5) ÅT = 295 K
c = 17.1230 (6) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2317 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.586Rint = 0.031
18957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
3617 reflectionsΔρmin = 0.47 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63473 (19)0.1392 (2)0.12609 (17)0.0510 (7)
H1A0.69160.15650.09320.061*
H1B0.62800.06280.12790.061*
C20.54086 (16)0.18813 (18)0.09361 (15)0.0344 (5)
C30.52231 (15)0.23237 (19)0.22967 (13)0.0328 (5)
H30.52020.30350.25250.039*
C40.46182 (16)0.15917 (18)0.28031 (13)0.0316 (5)
C50.41708 (17)0.06902 (18)0.25054 (14)0.0342 (5)
H50.42010.05550.19720.041*
C60.36796 (18)0.00109 (19)0.29911 (15)0.0387 (6)
H60.33720.06120.27880.046*
C70.36517 (19)0.0191 (2)0.37752 (15)0.0427 (6)
C80.4075 (2)0.1078 (2)0.40845 (16)0.0515 (7)
H80.40440.12040.46190.062*
C90.4548 (2)0.1784 (2)0.35973 (15)0.0459 (7)
H90.48250.23990.38040.055*
C100.39180 (15)0.28732 (16)0.13260 (12)0.0262 (5)
C110.31686 (16)0.23068 (17)0.09663 (13)0.0305 (5)
H110.32740.16030.08300.037*
C120.22563 (16)0.27854 (18)0.08068 (13)0.0324 (5)
H120.17450.24000.05710.039*
C130.21067 (15)0.38358 (18)0.09987 (13)0.0313 (5)
C140.28555 (17)0.43972 (18)0.13648 (15)0.0373 (6)
H140.27510.51010.15020.045*
C150.37581 (17)0.39194 (18)0.15282 (14)0.0351 (5)
H150.42630.43010.17760.042*
N10.48688 (12)0.23846 (14)0.14893 (10)0.0290 (4)
O10.51648 (12)0.18202 (13)0.02472 (10)0.0432 (4)
O20.12206 (12)0.43423 (13)0.08407 (11)0.0472 (5)
H20.08870.39820.05390.057*
S10.65353 (5)0.19057 (6)0.22246 (4)0.04894 (19)
Br10.29816 (3)0.07918 (3)0.44309 (2)0.07795 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (14)0.0612 (17)0.0575 (18)0.0169 (13)0.0023 (12)0.0021 (14)
C20.0277 (12)0.0379 (12)0.0376 (16)0.0002 (10)0.0076 (11)0.0026 (11)
C30.0271 (11)0.0393 (12)0.0320 (14)0.0020 (10)0.0051 (10)0.0013 (10)
C40.0285 (11)0.0418 (13)0.0244 (13)0.0066 (10)0.0036 (9)0.0008 (10)
C50.0393 (13)0.0402 (12)0.0229 (12)0.0040 (11)0.0011 (10)0.0000 (11)
C60.0402 (14)0.0346 (13)0.0413 (16)0.0070 (11)0.0006 (11)0.0037 (11)
C70.0436 (14)0.0497 (15)0.0349 (16)0.0170 (12)0.0104 (12)0.0136 (13)
C80.0581 (18)0.0711 (19)0.0254 (14)0.0138 (15)0.0042 (13)0.0003 (14)
C90.0483 (15)0.0560 (16)0.0335 (16)0.0013 (13)0.0020 (12)0.0098 (13)
C100.0226 (10)0.0330 (11)0.0230 (12)0.0013 (9)0.0013 (9)0.0011 (9)
C110.0320 (12)0.0290 (11)0.0305 (13)0.0008 (10)0.0002 (10)0.0040 (10)
C120.0258 (11)0.0405 (13)0.0310 (13)0.0017 (10)0.0041 (9)0.0098 (10)
C130.0253 (11)0.0421 (12)0.0265 (13)0.0064 (10)0.0012 (9)0.0062 (10)
C140.0344 (13)0.0331 (12)0.0442 (15)0.0038 (10)0.0071 (11)0.0118 (11)
C150.0264 (11)0.0388 (13)0.0400 (15)0.0039 (10)0.0059 (10)0.0062 (11)
N10.0234 (9)0.0362 (10)0.0273 (11)0.0037 (8)0.0009 (8)0.0024 (8)
O10.0371 (9)0.0622 (11)0.0304 (11)0.0067 (8)0.0078 (8)0.0037 (8)
O20.0324 (9)0.0557 (11)0.0534 (11)0.0145 (8)0.0157 (8)0.0223 (9)
S10.0268 (3)0.0699 (5)0.0501 (5)0.0060 (3)0.0060 (3)0.0099 (4)
Br10.1055 (3)0.0617 (2)0.0667 (3)0.02192 (19)0.0415 (2)0.03136 (17)
Geometric parameters (Å, º) top
C1—C21.503 (3)C7—Br11.897 (2)
C1—S11.791 (3)C8—C91.375 (4)
C1—H1A0.9700C8—H80.9300
C1—H1B0.9700C9—H90.9300
C2—O11.226 (3)C10—C111.375 (3)
C2—N11.349 (3)C10—C151.382 (3)
C3—N11.463 (3)C10—N11.438 (3)
C3—C41.502 (3)C11—C121.386 (3)
C3—S11.832 (2)C11—H110.9300
C3—H30.9800C12—C131.381 (3)
C4—C51.383 (3)C12—H120.9300
C4—C91.385 (3)C13—O21.371 (3)
C5—C61.380 (3)C13—C141.376 (3)
C5—H50.9300C14—C151.375 (3)
C6—C71.367 (3)C14—H140.9300
C6—H60.9300C15—H150.9300
C7—C81.361 (4)O2—H20.8200
C2—C1—S1107.98 (18)C7—C8—H8120.4
C2—C1—H1A110.1C9—C8—H8120.4
S1—C1—H1A110.1C8—C9—C4120.9 (2)
C2—C1—H1B110.1C8—C9—H9119.6
S1—C1—H1B110.1C4—C9—H9119.6
H1A—C1—H1B108.4C11—C10—C15119.83 (19)
O1—C2—N1124.3 (2)C11—C10—N1120.33 (19)
O1—C2—C1123.5 (2)C15—C10—N1119.84 (19)
N1—C2—C1112.2 (2)C10—C11—C12120.0 (2)
N1—C3—C4113.86 (18)C10—C11—H11120.0
N1—C3—S1105.06 (14)C12—C11—H11120.0
C4—C3—S1111.99 (15)C13—C12—C11119.9 (2)
N1—C3—H3108.6C13—C12—H12120.0
C4—C3—H3108.6C11—C12—H12120.0
S1—C3—H3108.6O2—C13—C14118.4 (2)
C5—C4—C9118.5 (2)O2—C13—C12121.7 (2)
C5—C4—C3121.7 (2)C14—C13—C12119.9 (2)
C9—C4—C3119.7 (2)C15—C14—C13120.1 (2)
C6—C5—C4120.7 (2)C15—C14—H14119.9
C6—C5—H5119.6C13—C14—H14119.9
C4—C5—H5119.6C14—C15—C10120.2 (2)
C7—C6—C5119.0 (2)C14—C15—H15119.9
C7—C6—H6120.5C10—C15—H15119.9
C5—C6—H6120.5C2—N1—C10122.44 (18)
C8—C7—C6121.6 (2)C2—N1—C3117.80 (18)
C8—C7—Br1120.2 (2)C10—N1—C3119.42 (17)
C6—C7—Br1118.2 (2)C13—O2—H2109.5
C7—C8—C9119.2 (2)C1—S1—C391.88 (11)
S1—C1—C2—O1168.02 (19)O2—C13—C14—C15179.5 (2)
S1—C1—C2—N112.4 (3)C12—C13—C14—C151.1 (4)
N1—C3—C4—C532.4 (3)C13—C14—C15—C100.0 (4)
S1—C3—C4—C586.6 (2)C11—C10—C15—C140.6 (3)
N1—C3—C4—C9151.3 (2)N1—C10—C15—C14179.1 (2)
S1—C3—C4—C989.7 (2)O1—C2—N1—C102.4 (3)
C9—C4—C5—C61.1 (3)C1—C2—N1—C10177.1 (2)
C3—C4—C5—C6175.3 (2)O1—C2—N1—C3175.7 (2)
C4—C5—C6—C70.8 (3)C1—C2—N1—C33.9 (3)
C5—C6—C7—C81.6 (4)C11—C10—N1—C252.6 (3)
C5—C6—C7—Br1179.47 (17)C15—C10—N1—C2127.1 (2)
C6—C7—C8—C90.5 (4)C11—C10—N1—C3120.6 (2)
Br1—C7—C8—C9179.4 (2)C15—C10—N1—C359.7 (3)
C7—C8—C9—C41.5 (4)C4—C3—N1—C2105.3 (2)
C5—C4—C9—C82.2 (4)S1—C3—N1—C217.6 (2)
C3—C4—C9—C8174.2 (2)C4—C3—N1—C1068.2 (3)
C15—C10—C11—C120.1 (3)S1—C3—N1—C10168.91 (15)
N1—C10—C11—C12179.6 (2)C2—C1—S1—C318.91 (19)
C10—C11—C12—C131.0 (3)N1—C3—S1—C120.26 (17)
C11—C12—C13—O2179.1 (2)C4—C3—S1—C1103.83 (18)
C11—C12—C13—C141.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.942.758 (2)175
C5—H5···O2ii0.932.533.361 (3)149
C12—H12···Br1iii0.932.843.463 (2)125
C15—H15···Cg2iv0.932.943.775 (2)150
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12BrNO2S
Mr350.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)13.3367 (6), 12.6292 (5), 17.1230 (6)
V3)2884.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)3.00
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.467, 0.586
No. of measured, independent and
observed [I > 2σ(I)] reflections
18957, 3617, 2317
Rint0.031
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.02
No. of reflections3617
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.47

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.942.758 (2)175
C5—H5···O2ii0.932.533.361 (3)149
C12—H12···Br1iii0.932.843.463 (2)125
C15—H15···Cg2iv0.932.943.775 (2)150
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAkkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1691–o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011). Acta Cryst. E67, o914–o915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76–79.  Google Scholar
First citationKalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616–622.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS Google Scholar
First citationVigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893–906.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds