organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydrazinyl­­idene-1-methyl-3H-2λ6,1-benzo­thia­zine-2,2-dione

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan, cX-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, and dThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com

(Received 26 June 2011; accepted 9 July 2011; online 16 July 2011)

In the title compound, C9H11N3O2S, the thia­zine ring adopts a half-chair conformation. In the crystal structure N—H⋯N hydrogen bonds connect two mol­ecules into a centrosymmetric dimer, forming an R22(6) ring motif. These dimers are further connected into chains by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Shafiq et al. (2011b[Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527-531.]). For information on 1,2 and 2,1-benzothia­zine, see: Shafiq et al. (2011a[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101-2105.]); Arshad et al. (2011[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801-2805.]). For related structures, see: Tahir et al. (2008[Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.]); Khan et al. (2010[Khan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839.]); Shafiq et al. (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.]); Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Monoclinic, P 21 /n

  • a = 6.6643 (2) Å

  • b = 9.6834 (3) Å

  • c = 15.5890 (5) Å

  • β = 97.699 (1)°

  • V = 996.94 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.41 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.947

  • 8966 measured reflections

  • 2426 independent reflections

  • 2114 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.111

  • S = 0.93

  • 2426 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O1i 0.86 (2) 2.46 (2) 3.221 (2) 147.7 (17)
N3—H2N⋯N2ii 0.790 (19) 2.376 (19) 3.094 (2) 151.8 (19)
C8—H8A⋯O1i 0.97 2.59 3.4178 (19) 144
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+3, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We are already engaged in the synthesis (Shafiq et al., 2011a), (Arshad et al., 2011) and crystallographic studies of 1,2- & 2,1-benzothiazine molecules (Arshad et al., 2009), (Shafiq et al., 2009). Here in, we report the crystal structure of hydrazide (I), synthesized from 1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (II) (Tahir et al., 2008).

In the crystal structure of title compound, the bond lengths and angles are almost similar to structurally similar molecules (II) and 1-propyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (III) (Khan et al., 2010). The fused aromatic and thiazine rings are twisted at dihedral angle of 11.13 (8)°. The thiazine ring (C1/C6/C7/C8/S1/N1) adopted the sofa shape with the r. m. s. deviavtion of fitted atoms of 0.2380Å showing the maximum deviation for the S1 (0.3969 (8)Å) & C8 (0.2687 (7)Å). The molecules in the crystal structure dimerized through N—H···N hydrogen bonding forming six-membered R22(6) ring motif (Bernstein et al., 1995). There are C—H···O and N—H···N type interactions which connect the dimers in zig-zag mode along c axis and a axis and generate another seven membered ring motif R21(7).

Related literature top

For the synthesis of the title compound, see: Shafiq et al. (2011b). For information about 1,2 and 2,1-benzothiazine, see: Shafiq et al. (2011a); Arshad et al. (2011). For related structures, see: Tahir et al. (2008); Khan et al. (2010); Shafiq et al. (2009); Arshad et al. (2009). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

The synthesis of title compound have already been reportrd (Shafiq et al., 2011b). Suitable crystals were grown in dry ethanol under slow evaporation.

Refinement top

H-atoms bonded to C were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for methyl group and C—H = 0.97 Å for methylene group and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene and with Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. The coordinates of the H atoms bonded to N were refined with Uiso(H) = 1.2 Ueq(N). Four reflections (-1 0 1, 0 1 1, 0 0 2 and -1 0 9) have been omitted in final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Perspective view showing the dimers and hydrogen bonding via dashed lines, hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
4-Hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C9H11N3O2SF(000) = 472
Mr = 225.27Dx = 1.501 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5698 reflections
a = 6.6643 (2) Åθ = 3.7–28.3°
b = 9.6834 (3) ŵ = 0.31 mm1
c = 15.5890 (5) ÅT = 296 K
β = 97.699 (1)°Needle, yellow
V = 996.94 (5) Å30.41 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2426 independent reflections
Radiation source: fine-focus sealed tube2114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.3°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 68
Tmin = 0.884, Tmax = 0.947k = 1112
8966 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.3098P]
where P = (Fo2 + 2Fc2)/3
2426 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H11N3O2SV = 996.94 (5) Å3
Mr = 225.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6643 (2) ŵ = 0.31 mm1
b = 9.6834 (3) ÅT = 296 K
c = 15.5890 (5) Å0.41 × 0.22 × 0.18 mm
β = 97.699 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2426 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2114 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.947Rint = 0.020
8966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.30 e Å3
2426 reflectionsΔρmin = 0.29 e Å3
143 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8692 (2)0.28978 (14)0.04960 (9)0.0354 (3)
C20.7617 (2)0.38627 (17)0.00433 (10)0.0460 (4)
H20.65100.43060.01380.055*
C30.8167 (3)0.41727 (17)0.08437 (11)0.0491 (4)
H30.74200.48110.12000.059*
C40.9815 (3)0.35393 (17)0.11144 (10)0.0468 (4)
H41.02090.37650.16470.056*
C51.0884 (2)0.25656 (16)0.05909 (10)0.0409 (3)
H51.19900.21340.07810.049*
C61.0349 (2)0.22102 (13)0.02180 (9)0.0328 (3)
C71.1508 (2)0.11464 (13)0.07523 (8)0.0341 (3)
C81.0878 (3)0.07413 (16)0.16103 (10)0.0454 (4)
H8A1.20400.03860.19870.054*
H8B0.98660.00170.15240.054*
C90.6206 (3)0.3164 (2)0.15568 (14)0.0609 (5)
H9A0.63430.41410.16520.091*
H9B0.59060.27230.20760.091*
H9C0.51280.29910.10960.091*
N10.80990 (19)0.26108 (15)0.13215 (9)0.0446 (3)
N21.30403 (19)0.06040 (13)0.04671 (8)0.0427 (3)
N31.4169 (2)0.03646 (17)0.09606 (11)0.0565 (4)
O11.14407 (18)0.31926 (13)0.22310 (7)0.0515 (3)
O20.8941 (2)0.17659 (15)0.28274 (8)0.0587 (3)
S10.98824 (5)0.21730 (4)0.20972 (2)0.03865 (15)
H1N1.357 (3)0.087 (2)0.1305 (13)0.046*
H2N1.494 (3)0.070 (2)0.0678 (12)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (6)0.0370 (7)0.0375 (7)0.0038 (5)0.0035 (5)0.0031 (5)
C20.0376 (7)0.0488 (8)0.0501 (8)0.0144 (6)0.0008 (6)0.0016 (7)
C30.0513 (8)0.0484 (8)0.0442 (8)0.0120 (7)0.0065 (6)0.0047 (6)
C40.0572 (9)0.0476 (8)0.0345 (7)0.0076 (7)0.0028 (6)0.0034 (6)
C50.0457 (8)0.0419 (7)0.0356 (7)0.0095 (6)0.0075 (6)0.0007 (6)
C60.0338 (6)0.0312 (6)0.0334 (6)0.0043 (5)0.0040 (5)0.0026 (5)
C70.0363 (6)0.0317 (6)0.0350 (6)0.0052 (5)0.0076 (5)0.0005 (5)
C80.0563 (9)0.0386 (7)0.0445 (8)0.0131 (6)0.0188 (7)0.0076 (6)
C90.0404 (8)0.0763 (12)0.0702 (12)0.0155 (8)0.0231 (8)0.0002 (10)
N10.0331 (6)0.0560 (7)0.0470 (7)0.0112 (5)0.0137 (5)0.0033 (6)
N20.0440 (6)0.0422 (6)0.0437 (6)0.0151 (5)0.0122 (5)0.0063 (5)
N30.0554 (8)0.0581 (9)0.0595 (9)0.0307 (7)0.0210 (7)0.0176 (7)
O10.0558 (7)0.0577 (7)0.0402 (6)0.0082 (5)0.0041 (5)0.0058 (5)
O20.0627 (7)0.0715 (8)0.0479 (7)0.0109 (6)0.0288 (6)0.0109 (6)
S10.0408 (2)0.0428 (2)0.0345 (2)0.00504 (13)0.01310 (14)0.00140 (12)
Geometric parameters (Å, º) top
C1—C21.390 (2)C8—S11.7532 (15)
C1—C61.4068 (19)C8—H8A0.9700
C1—N11.4234 (19)C8—H8B0.9700
C2—C31.380 (2)C9—N11.4616 (19)
C2—H20.9300C9—H9A0.9600
C3—C41.373 (2)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.381 (2)N1—S11.6338 (14)
C4—H40.9300N2—N31.3721 (18)
C5—C61.398 (2)N3—H1N0.86 (2)
C5—H50.9300N3—H2N0.790 (19)
C6—C71.4761 (18)O1—S11.4278 (12)
C7—N21.2801 (17)O2—S11.4270 (12)
C7—C81.5063 (19)
C2—C1—C6119.61 (14)S1—C8—H8A109.6
C2—C1—N1119.68 (13)C7—C8—H8B109.6
C6—C1—N1120.71 (13)S1—C8—H8B109.6
C3—C2—C1121.03 (14)H8A—C8—H8B108.1
C3—C2—H2119.5N1—C9—H9A109.5
C1—C2—H2119.5N1—C9—H9B109.5
C4—C3—C2120.07 (14)H9A—C9—H9B109.5
C4—C3—H3120.0N1—C9—H9C109.5
C2—C3—H3120.0H9A—C9—H9C109.5
C3—C4—C5119.60 (15)H9B—C9—H9C109.5
C3—C4—H4120.2C1—N1—C9120.59 (14)
C5—C4—H4120.2C1—N1—S1117.21 (10)
C4—C5—C6121.84 (14)C9—N1—S1118.42 (13)
C4—C5—H5119.1C7—N2—N3119.27 (13)
C6—C5—H5119.1N2—N3—H1N118.0 (13)
C5—C6—C1117.81 (13)N2—N3—H2N108.4 (14)
C5—C6—C7120.23 (12)H1N—N3—H2N121 (2)
C1—C6—C7121.95 (13)O2—S1—O1117.61 (8)
N2—C7—C6118.14 (12)O2—S1—N1107.94 (8)
N2—C7—C8122.12 (12)O1—S1—N1111.81 (8)
C6—C7—C8119.74 (11)O2—S1—C8111.06 (8)
C7—C8—S1110.19 (10)O1—S1—C8107.46 (8)
C7—C8—H8A109.6N1—S1—C899.48 (8)
C6—C1—C2—C30.9 (2)C6—C7—C8—S133.65 (17)
N1—C1—C2—C3179.38 (15)C2—C1—N1—C99.0 (2)
C1—C2—C3—C40.9 (3)C6—C1—N1—C9170.69 (15)
C2—C3—C4—C51.7 (3)C2—C1—N1—S1148.76 (13)
C3—C4—C5—C60.7 (3)C6—C1—N1—S131.55 (18)
C4—C5—C6—C11.1 (2)C6—C7—N2—N3178.54 (14)
C4—C5—C6—C7178.92 (14)C8—C7—N2—N30.9 (2)
C2—C1—C6—C51.9 (2)C1—N1—S1—O2172.78 (11)
N1—C1—C6—C5178.42 (13)C9—N1—S1—O228.97 (17)
C2—C1—C6—C7178.15 (13)C1—N1—S1—O156.36 (14)
N1—C1—C6—C71.5 (2)C9—N1—S1—O1101.89 (15)
C5—C6—C7—N22.4 (2)C1—N1—S1—C856.87 (13)
C1—C6—C7—N2177.54 (13)C9—N1—S1—C8144.88 (15)
C5—C6—C7—C8178.13 (13)C7—C8—S1—O2169.33 (11)
C1—C6—C7—C81.9 (2)C7—C8—S1—O160.75 (13)
N2—C7—C8—S1145.78 (13)C7—C8—S1—N155.82 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O1i0.86 (2)2.46 (2)3.221 (2)147.7 (17)
N3—H2N···N2ii0.790 (19)2.376 (19)3.094 (2)151.8 (19)
C8—H8A···O1i0.972.593.4178 (19)144
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3, y, z.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S
Mr225.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.6643 (2), 9.6834 (3), 15.5890 (5)
β (°) 97.699 (1)
V3)996.94 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.41 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.884, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
8966, 2426, 2114
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.111, 0.93
No. of reflections2426
No. of parameters143
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O1i0.86 (2)2.46 (2)3.221 (2)147.7 (17)
N3—H2N···N2ii0.790 (19)2.376 (19)3.094 (2)151.8 (19)
C8—H8A···O1i0.972.593.4178 (19)143.8
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3, y, z.
 

Footnotes

Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805.  CAS Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101–2105.  CAS Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds