metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1025-m1026

[Bis(3-amino­prop­yl)amine-κ3N,N′,N′′]bis­­(thio­cyanato-κN)cobalt(II)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany
*Correspondence e-mail: jboeckmann@ac.uni-kiel.de

(Received 30 June 2011; accepted 30 June 2011; online 6 July 2011)

The asymmetric unit of the title compound, [Co(NCS)2(C6H17N3)], consists of one Co2+ cation, two thio­cyanate anions and one bis­(3-amino­prop­yl)amine ligand, all in general positions. The cobalt cation is coordinated by five N atoms of two terminal N-bonded thio­cyanate anions and one bis­(3-amino­prop­yl)amine ligand, defining a slightly distorted square-pyramidal coordination polyhedron. The mol­ecules are held together in the crystal by weak N—H⋯S inter­actions.

Related literature

For isostructural compounds with copper(II) and cadmium(II) but with an alternate setting of the space group, see: Cannas et al. (1974[Cannas, M., Carta, G., Cristini, A. & Marongiu, G. (1974). J. Chem. Soc. Dalton. Trans. pp. 1278-1281.], 1977[Cannas, M., Cristini, A. & Marongiu, G. (1977). Inorg. Chim. Acta, 22, 233-237.]). For background to thermal decomposition reactions and the resulting inter­mediates, see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton. Trans. pp. 11019-11026.], 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]); Boeckmann et al. (2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100043.]); Wöhlert et al. (2011[Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. doi:10.1002/ange.201007899.]); Wriedt et al. (2009a[Wriedt, M., Sellmer, S. & Näther, C. (2009a). Inorg. Chem. 48, 6896-6903.],b[Wriedt, M., Sellmer, S. & Näther, C. (2009b). Dalton. Trans. pp. 7975-7984.]); Wriedt & Näther (2010[Wriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707-4709.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C6H17N3)]

  • Mr = 306.32

  • Monoclinic, P 21 /n

  • a = 7.5515 (4) Å

  • b = 14.2250 (11) Å

  • c = 12.8825 (8) Å

  • β = 103.091 (7)°

  • V = 1347.88 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 170 K

  • 0.11 × 0.08 × 0.06 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.856, Tmax = 0.905

  • 15883 measured reflections

  • 3234 independent reflections

  • 2832 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.04

  • 3234 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S21i 0.92 2.82 3.6177 (14) 145
N1—H1B⋯S11ii 0.92 2.80 3.5665 (14) 142
N2—H2⋯S11iii 0.93 2.69 3.5903 (15) 162
N3—H3A⋯S21iv 0.92 2.69 3.5839 (16) 165
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported about thermal decomposition reactions as an alternative synthetic strategy for the rational design of condensed frameworks (Wriedt et al. (2009a,b); Wriedt & Näther (2010)). Herein, transition metal(II) thio- and selenocyanato coordination compounds with different neutral N-donor co-ligands are heated, which leads to a stepwise loss of the neutral co-ligands and to the formation of ligand-deficient intermediates. Depending on the precursor, the dimensionality of the resulting intermediates can simply be predefined. If precursors are used, which consist of bidentate co-ligands, two-dimensional structures can be obatined, in which the metal(II) cations are octahedrally coordinated by four bridging anions and one bridging co-ligand (Wöhlert et al. (2011); Wriedt et al. (2009a,b); Wriedt & Näther (2010)). If precursor complexes with monodentate co-ligands are used, one-dimensional structures are obtained in which the metal(II) cations are only bridged via the anionic ligands (Boeckmann & Näther (2010); Boeckmann & Näther (2011); Boeckmann et al. (2011)). In further work we tried to synthesize octahedral coordinated precursor compounds based on the tridentate co-ligand bis(3-aminopropyl)amin in combination with a volatile monodentate co-ligand like e.g. water or methanol, which on heating should transform into dimers. Surprisingly a five-coordinated complex was obtained which was characterized by single crystal X-ray diffraction.

In the crystal structure the cobalt(II) cations are coordinated by five nitrogen atoms of two terminal N-bonded thiocyanate anions and one tridenate co-ligand bis(3-aminopropyl)amin in a slightly distorted square-pyramidal coordination geometry (Fig. 1). The title compound is isostrucutral to its copper(II) and cadmium(II) thiocyanato compounds reported recently (Cannas et al. (1974); Cannas et al. (1977)). These discrete complexes are arranged into columns which elongated in the direction of the crystallographic a axis (Fig. 2). Each two of these columns are pairwise centrosymmetrically arranged into a three-dimensional packing. The molecules are held together by weak N-H···S interactions.

Related literature top

For isostructural compounds with copper(II) and cadmium(II) but with an alternate setting of the space group, see: Cannas et al. (1974, 1977). For background to thermal decomposition reactions and the resulting intermediates see: Boeckmann & Näther (2010, 2011); Boeckmann et al. (2011); Wöhlert et al. (2011); Wriedt et al. (2009a,b); Wriedt & Näther (2010).

Experimental top

The title compound was prepared by the reaction of 96.6 mg Co(NCS)2.H2O (0.50 mmol), 40.4 µL pyridine (0.50 mmol) and 70.6 µL bis(3-aminopropyl)amine (0.50 mmol) in 1.50 ml water at RT in a closed 3 ml snap cap vial. After one week violet blocks of the title compound were obtained.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropically with Ueq(H) = 1.2 Ueq(C) and Ueq(H) = 1.2 Ueq(N) of the parent atom using a riding model with C—H = 0.99 Å, N—H = 0.93 Å (NH1) and N—H = 0.92 Å (NH2).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound, showing the coordination around the Co2+ cations with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Packing diagram of the title compound with view along the crystallographic b axis (aqua = cobalt; yellow = sulfur; blue = nitrogen; black = carbon; light-grey = hydrogen).
[Bis(3-aminopropyl)amine-κ3N,N',N'']bis(thiocyanato- κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C6H17N3)]F(000) = 636
Mr = 306.32Dx = 1.509 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8000 reflections
a = 7.5515 (4) Åθ = 3.2–28.1°
b = 14.2250 (11) ŵ = 1.57 mm1
c = 12.8825 (8) ÅT = 170 K
β = 103.091 (7)°Block, violet
V = 1347.88 (15) Å30.11 × 0.08 × 0.06 mm
Z = 4
Data collection top
Stoe IPDS-1
diffractometer
3234 independent reflections
Radiation source: fine-focus sealed tube2832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ scansθmax = 28.1°, θmin = 3.2°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 99
Tmin = 0.856, Tmax = 0.905k = 1818
15883 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.3919P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3234 reflectionsΔρmax = 0.33 e Å3
146 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (15)
Crystal data top
[Co(NCS)2(C6H17N3)]V = 1347.88 (15) Å3
Mr = 306.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5515 (4) ŵ = 1.57 mm1
b = 14.2250 (11) ÅT = 170 K
c = 12.8825 (8) Å0.11 × 0.08 × 0.06 mm
β = 103.091 (7)°
Data collection top
Stoe IPDS-1
diffractometer
3234 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
2832 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.905Rint = 0.043
15883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3234 reflectionsΔρmin = 0.51 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.56529 (3)0.529621 (13)0.677913 (16)0.01799 (9)
N10.70311 (18)0.40562 (9)0.66179 (10)0.0210 (3)
H1A0.62290.36510.61950.025*
H1B0.79300.41920.62640.025*
N20.42397 (18)0.45541 (10)0.78508 (11)0.0231 (3)
H20.33960.41580.74260.028*
N30.32593 (19)0.60251 (10)0.61765 (11)0.0260 (3)
H3A0.34950.64830.57220.031*
H3B0.24340.56150.57790.031*
C10.7876 (2)0.35590 (11)0.76221 (14)0.0265 (3)
H1C0.86890.39950.81080.032*
H1D0.86190.30280.74630.032*
C20.6429 (3)0.31937 (12)0.81595 (14)0.0300 (4)
H2A0.70010.27480.87270.036*
H2B0.55210.28390.76290.036*
C30.5447 (3)0.39473 (13)0.86483 (13)0.0301 (4)
H3C0.47110.36400.90970.036*
H3D0.63620.43480.91190.036*
C40.3199 (3)0.51944 (14)0.84044 (15)0.0349 (4)
H4A0.40570.56380.88510.042*
H4B0.26270.48170.88860.042*
C50.1732 (3)0.57537 (16)0.76589 (18)0.0420 (5)
H5A0.09260.53080.71820.050*
H5B0.09870.60780.80900.050*
C60.2402 (3)0.64767 (13)0.69795 (16)0.0355 (4)
H6A0.13680.68700.66110.043*
H6B0.32980.68920.74420.043*
N110.6789 (2)0.58506 (10)0.55469 (12)0.0293 (3)
C110.7699 (2)0.61541 (10)0.50112 (12)0.0199 (3)
S110.89760 (6)0.65832 (3)0.42551 (3)0.03094 (12)
N210.70829 (19)0.60345 (10)0.80127 (12)0.0274 (3)
C210.7925 (2)0.63897 (11)0.87783 (13)0.0225 (3)
S210.91711 (7)0.68852 (4)0.98333 (4)0.03999 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01799 (12)0.01756 (12)0.01939 (12)0.00138 (7)0.00625 (8)0.00026 (7)
N10.0237 (6)0.0202 (6)0.0208 (6)0.0026 (5)0.0087 (5)0.0013 (5)
N20.0225 (6)0.0295 (7)0.0195 (6)0.0052 (5)0.0092 (5)0.0009 (5)
N30.0243 (7)0.0301 (7)0.0233 (7)0.0076 (5)0.0046 (5)0.0032 (5)
C10.0242 (8)0.0232 (7)0.0312 (9)0.0032 (6)0.0045 (6)0.0086 (6)
C20.0363 (9)0.0226 (8)0.0311 (9)0.0039 (6)0.0074 (7)0.0103 (6)
C30.0369 (9)0.0345 (9)0.0202 (8)0.0070 (7)0.0096 (7)0.0065 (6)
C40.0370 (10)0.0456 (10)0.0297 (9)0.0021 (8)0.0235 (8)0.0041 (7)
C50.0280 (9)0.0571 (13)0.0476 (12)0.0059 (8)0.0227 (8)0.0088 (9)
C60.0339 (9)0.0371 (9)0.0370 (10)0.0144 (7)0.0111 (8)0.0093 (8)
N110.0329 (8)0.0246 (7)0.0344 (8)0.0023 (5)0.0163 (6)0.0078 (6)
C110.0211 (7)0.0172 (6)0.0210 (7)0.0004 (5)0.0039 (6)0.0016 (5)
S110.0279 (2)0.0411 (2)0.0277 (2)0.00521 (17)0.01443 (17)0.00238 (17)
N210.0255 (7)0.0272 (7)0.0292 (7)0.0064 (5)0.0053 (6)0.0037 (6)
C210.0211 (7)0.0203 (7)0.0275 (8)0.0004 (5)0.0081 (6)0.0015 (6)
S210.0455 (3)0.0373 (3)0.0297 (2)0.0007 (2)0.0071 (2)0.00828 (18)
Geometric parameters (Å, º) top
Co1—N212.0043 (14)C2—C31.519 (3)
Co1—N32.0758 (13)C2—H2A0.9900
Co1—N12.0822 (13)C2—H2B0.9900
Co1—N112.1201 (14)C3—H3C0.9900
Co1—N22.1970 (13)C3—H3D0.9900
N1—C11.486 (2)C4—C51.517 (3)
N1—H1A0.9200C4—H4A0.9900
N1—H1B0.9200C4—H4B0.9900
N2—C31.486 (2)C5—C61.510 (3)
N2—C41.487 (2)C5—H5A0.9900
N2—H20.9300C5—H5B0.9900
N3—C61.485 (2)C6—H6A0.9900
N3—H3A0.9200C6—H6B0.9900
N3—H3B0.9200N11—C111.162 (2)
C1—C21.512 (2)C11—S111.6362 (16)
C1—H1C0.9900N21—C211.161 (2)
C1—H1D0.9900C21—S211.6280 (17)
N21—Co1—N3107.58 (6)C1—C2—C3114.74 (14)
N21—Co1—N1109.34 (6)C1—C2—H2A108.6
N3—Co1—N1142.97 (5)C3—C2—H2A108.6
N21—Co1—N1199.33 (6)C1—C2—H2B108.6
N3—Co1—N1189.99 (6)C3—C2—H2B108.6
N1—Co1—N1186.80 (5)H2A—C2—H2B107.6
N21—Co1—N290.27 (6)N2—C3—C2113.84 (13)
N3—Co1—N288.24 (6)N2—C3—H3C108.8
N1—Co1—N288.88 (5)C2—C3—H3C108.8
N11—Co1—N2170.33 (6)N2—C3—H3D108.8
C1—N1—Co1116.24 (10)C2—C3—H3D108.8
C1—N1—H1A108.2H3C—C3—H3D107.7
Co1—N1—H1A108.2N2—C4—C5114.03 (15)
C1—N1—H1B108.2N2—C4—H4A108.7
Co1—N1—H1B108.2C5—C4—H4A108.7
H1A—N1—H1B107.4N2—C4—H4B108.7
C3—N2—C4109.42 (13)C5—C4—H4B108.7
C3—N2—Co1113.85 (10)H4A—C4—H4B107.6
C4—N2—Co1113.08 (10)C6—C5—C4115.58 (16)
C3—N2—H2106.7C6—C5—H5A108.4
C4—N2—H2106.7C4—C5—H5A108.4
Co1—N2—H2106.7C6—C5—H5B108.4
C6—N3—Co1115.82 (11)C4—C5—H5B108.4
C6—N3—H3A108.3H5A—C5—H5B107.4
Co1—N3—H3A108.3N3—C6—C5111.42 (15)
C6—N3—H3B108.3N3—C6—H6A109.3
Co1—N3—H3B108.3C5—C6—H6A109.3
H3A—N3—H3B107.4N3—C6—H6B109.3
N1—C1—C2110.50 (13)C5—C6—H6B109.3
N1—C1—H1C109.5H6A—C6—H6B108.0
C2—C1—H1C109.6C11—N11—Co1167.72 (14)
N1—C1—H1D109.5N11—C11—S11179.86 (18)
C2—C1—H1D109.5C21—N21—Co1174.01 (14)
H1C—C1—H1D108.1N21—C21—S21177.91 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S21i0.922.823.6177 (14)145
N1—H1B···S11ii0.922.803.5665 (14)142
N2—H2···S11iii0.932.693.5903 (15)162
N3—H3A···S21iv0.922.693.5839 (16)165
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C6H17N3)]
Mr306.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)7.5515 (4), 14.2250 (11), 12.8825 (8)
β (°) 103.091 (7)
V3)1347.88 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.11 × 0.08 × 0.06
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.856, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
15883, 3234, 2832
Rint0.043
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.04
No. of reflections3234
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.51

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S21i0.922.823.6177 (14)145
N1—H1B···S11ii0.922.803.5665 (14)142
N2—H2···S11iii0.932.693.5903 (15)162
N3—H3A···S21iv0.922.693.5839 (16)165
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. Special thanks go to Inke Jess for her support in single-crystal measurements.

References

First citationBoeckmann, J. & Näther, C. (2010). Dalton. Trans. pp. 11019-11026.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100043.  Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCannas, M., Carta, G., Cristini, A. & Marongiu, G. (1974). J. Chem. Soc. Dalton. Trans. pp. 1278-1281.  CSD CrossRef Web of Science Google Scholar
First citationCannas, M., Cristini, A. & Marongiu, G. (1977). Inorg. Chim. Acta, 22, 233–237.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. doi:10.1002/ange.201007899.  Google Scholar
First citationWriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707–4709.  Web of Science CSD CrossRef CAS Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009a). Inorg. Chem. 48, 6896-6903.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009b). Dalton. Trans. pp. 7975–7984.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1025-m1026
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds