organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-N-(2-methyl­phenyl­sulfon­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 July 2011; accepted 11 July 2011; online 16 July 2011)

The asymmetric unit of the title compound, C11H15NO3S, contains two independent mol­ecules in which the amide bonds show a trans conformation. The C—S—N—C torsion angles are −67.4 (2) and 63.8 (2)° in the two independent mol­ecules. In one of the mol­ecules, a methyl group is disordered over two sets of sites with a site-occupation factor of 0.661 (16) for the major occupany component. In the crystal, mol­ecules are packed into chains running along [101] through N—H⋯O(S) hydrogen bonds.

Related literature

For hydrogen bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]), on N-(ar­yl)-sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]), and on N-(aryl­sulfon­yl)-amides, see: Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o595.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1188.])

[Scheme 1]

Experimental

Crystal data
  • C11H15NO3S

  • Mr = 241.30

  • Monoclinic, P 21 /n

  • a = 11.829 (1) Å

  • b = 16.351 (1) Å

  • c = 13.351 (1) Å

  • β = 96.485 (8)°

  • V = 2565.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.46 × 0.44 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.896, Tmax = 0.908

  • 9793 measured reflections

  • 5225 independent reflections

  • 3538 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.06

  • 5225 reflections

  • 306 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6 0.82 (2) 2.02 (2) 2.844 (2) 175 (2)
N2—H2N⋯O3i 0.81 (2) 2.08 (2) 2.870 (2) 167 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures and other aspects of N-(aryl)-amides (Bhat & Gowda, 2000; Gowda et al., 2007), N-(aryl)-sulfonamides (Gowda et al., 2005) and N-(arylsulfonyl)-amides (Shakuntala et al., 2011a,b). As a part of studying the effects of substituents on the structures of this class of compounds, the structure of N-(2-methylphenylsulfonyl)-2,2-dimethylacetamide (I) has been determined (Fig. 1). In (I), the asymmetric unit contains two independent molecules. The conformations of the N—H and C=O bonds in the side chains are anti to each other, similar to that observed in N-(2-methylphenylsulfonyl)-acetamide (II) (Shakuntala et al., 2011b) and N-(2-chlorophenylsulfonyl)-2,2-dimethylacetamide (III) (Shakuntala et al., 2011a).

Further, in both the independent molecules, the conformation of the amide H atoms are syn to the ortho-methyl groups in the benzene rings, similar to that observed between the amide H atom and the ortho-methyl group in (II), but contrary to the anti conformation observed between the amide H atom and the ortho-chloro group in (III).

The molecules in (I) are bent at the S-atoms with a C—S—N—C torsion angle of -67.4 (2)° and 63.8 (2)° in the two independent molecules, compared to the values of -58.2 (2)° in (II) and 64.4 (2)° in (III). Further, the dihedral angle between the benzene rings and the SO2—NH—CO—C groups in (I) are 86.1 (2)° (molecule 1) and 87.4 (2)° (molecule 2), compared to the values of 87.0 (1)° in (II) and 87.4 (1)° in (III).

In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains. Part of the crystal structure is shown in Fig. 2.

Related literature top

For hydrogen bonding modes of sulfonamides, see; Adsmond & Grant (2001). For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2007), on N-(aryl)-sulfonamides, see: Gowda et al. (2005), and on N-(arylsulfonyl)-amides, see: Shakuntala et al. (2011a,b)

Experimental top

The title compound was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of 2,2-dimethylacetyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model the with aromatic C—H distance = 0.93 Å, methyl C—H = 0.96 Å, methyne C—H = 0.98 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The atom C10 is disordered and was refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.66 (2) and 0.34 (2)]. The distance C8—C10 was restrained to 1.55 (1) Å and the corresponding bond distances in the disordered group were restrained to be equal.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2,2-Dimethyl-N-(2-methylphenylsulfonyl)acetamide top
Crystal data top
C11H15NO3SF(000) = 1024
Mr = 241.30Dx = 1.249 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2934 reflections
a = 11.829 (1) Åθ = 2.9–27.7°
b = 16.351 (1) ŵ = 0.25 mm1
c = 13.351 (1) ÅT = 293 K
β = 96.485 (8)°Prism, colourless
V = 2565.8 (3) Å30.46 × 0.44 × 0.40 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
5225 independent reflections
Radiation source: fine-focus sealed tube3538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.896, Tmax = 0.908k = 2015
9793 measured reflectionsl = 1614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.310P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5225 reflectionsΔρmax = 0.25 e Å3
306 parametersΔρmin = 0.32 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0160 (11)
Crystal data top
C11H15NO3SV = 2565.8 (3) Å3
Mr = 241.30Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.829 (1) ŵ = 0.25 mm1
b = 16.351 (1) ÅT = 293 K
c = 13.351 (1) Å0.46 × 0.44 × 0.40 mm
β = 96.485 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
5225 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3538 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.908Rint = 0.015
9793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0455 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
5225 reflectionsΔρmin = 0.32 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.24942 (16)0.90807 (11)0.25752 (15)0.0439 (5)
C20.24885 (19)0.97836 (13)0.31734 (18)0.0566 (6)
C30.2774 (2)1.05064 (15)0.2737 (2)0.0771 (8)
H30.27841.09860.31120.093*
C40.3040 (3)1.05412 (18)0.1779 (3)0.0960 (10)
H40.32251.10420.15120.115*
C50.3042 (3)0.98543 (19)0.1197 (2)0.0959 (10)
H50.32300.98860.05400.115*
C60.2762 (2)0.91095 (15)0.16000 (18)0.0641 (6)
H60.27550.86350.12150.077*
C70.3989 (2)0.77526 (15)0.41066 (16)0.0557 (6)
C80.4565 (3)0.7573 (2)0.5134 (2)0.0990 (10)
H8A0.40360.78390.55470.119*0.661 (16)
H8B0.41790.78940.56170.119*0.339 (16)
C90.4490 (4)0.6760 (2)0.5464 (3)0.1276 (15)
H9A0.48420.64030.50180.153*
H9B0.37050.66110.54640.153*
H9C0.48730.67090.61340.153*
C10A0.5512 (10)0.8134 (5)0.5426 (7)0.121 (4)0.661 (16)
H10A0.52440.86880.53690.145*0.661 (16)
H10B0.60940.80540.49890.145*0.661 (16)
H10C0.58180.80260.61100.145*0.661 (16)
C10B0.4852 (11)0.8264 (5)0.5782 (8)0.072 (3)0.339 (16)
H10D0.51990.80750.64250.086*0.339 (16)
H10E0.41740.85660.58710.086*0.339 (16)
H10F0.53750.86120.54820.086*0.339 (16)
C110.2176 (3)0.97897 (18)0.4234 (2)0.0941 (10)
H11A0.26940.94470.46510.113*
H11B0.14150.95870.42380.113*
H11C0.22201.03390.44910.113*
N10.28574 (16)0.79150 (11)0.40442 (13)0.0498 (4)
H1N0.2555 (19)0.7959 (15)0.4568 (14)0.060*
O10.09374 (14)0.82144 (12)0.32966 (16)0.0884 (6)
O20.22413 (17)0.75295 (9)0.22545 (13)0.0776 (5)
O30.44952 (15)0.77645 (13)0.33654 (13)0.0803 (6)
S10.20407 (5)0.81269 (3)0.29885 (4)0.05239 (18)
C120.25372 (19)0.94032 (13)0.75834 (16)0.0540 (5)
C130.1651 (2)0.99676 (15)0.7539 (2)0.0689 (7)
C140.1867 (3)1.07325 (18)0.7135 (2)0.0941 (10)
H140.12931.11240.70740.113*
C150.2888 (4)1.0921 (2)0.6828 (3)0.1094 (12)
H150.29981.14370.65630.131*
C160.3756 (3)1.0370 (2)0.6901 (3)0.1032 (11)
H160.44581.05100.67000.124*
C170.3575 (2)0.96009 (17)0.7278 (2)0.0770 (8)
H170.41570.92150.73260.092*
C180.12222 (18)0.78145 (13)0.64273 (16)0.0475 (5)
C190.0175 (2)0.73490 (15)0.60130 (17)0.0587 (6)
H190.01530.70920.65770.070*
C200.0680 (2)0.7950 (2)0.5511 (3)0.0923 (9)
H20A0.03600.82230.49720.111*
H20B0.08670.83460.59970.111*
H20C0.13560.76630.52460.111*
C210.0469 (3)0.66856 (17)0.5299 (2)0.0847 (9)
H21A0.10040.63140.56500.102*
H21B0.07990.69270.47450.102*
H21C0.02090.63940.50490.102*
C220.0524 (2)0.9796 (2)0.7900 (3)0.1058 (11)
H22A0.06320.96690.86060.127*
H22B0.01720.93410.75340.127*
H22C0.00451.02690.77910.127*
N20.13051 (15)0.79850 (11)0.74326 (13)0.0484 (4)
H2N0.0846 (17)0.7801 (14)0.7778 (16)0.058*
O40.34155 (14)0.79679 (11)0.79255 (15)0.0763 (5)
O50.21005 (16)0.84663 (12)0.90834 (12)0.0793 (5)
O60.19510 (14)0.80550 (11)0.59210 (12)0.0650 (5)
S20.24242 (5)0.84139 (4)0.80908 (4)0.05448 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0460 (11)0.0338 (10)0.0508 (12)0.0038 (9)0.0004 (9)0.0021 (8)
C20.0646 (14)0.0393 (12)0.0641 (14)0.0062 (10)0.0001 (11)0.0043 (10)
C30.099 (2)0.0351 (13)0.097 (2)0.0028 (13)0.0053 (16)0.0023 (13)
C40.123 (3)0.0485 (17)0.121 (3)0.0030 (17)0.034 (2)0.0257 (17)
C50.136 (3)0.075 (2)0.085 (2)0.0200 (19)0.050 (2)0.0288 (17)
C60.0875 (18)0.0487 (14)0.0581 (14)0.0144 (12)0.0162 (12)0.0046 (11)
C70.0590 (14)0.0630 (15)0.0451 (12)0.0084 (11)0.0056 (10)0.0098 (10)
C80.108 (2)0.123 (3)0.0601 (18)0.004 (2)0.0171 (16)0.0297 (18)
C90.168 (4)0.113 (3)0.092 (2)0.006 (3)0.028 (2)0.054 (2)
C10A0.142 (8)0.126 (5)0.081 (4)0.010 (5)0.043 (5)0.018 (4)
C10B0.058 (6)0.089 (7)0.066 (6)0.001 (5)0.000 (4)0.005 (4)
C110.150 (3)0.0631 (18)0.0695 (18)0.0237 (18)0.0144 (18)0.0181 (13)
N10.0553 (11)0.0534 (11)0.0426 (10)0.0039 (8)0.0140 (8)0.0064 (8)
O10.0473 (10)0.0915 (15)0.1265 (17)0.0073 (9)0.0104 (10)0.0322 (12)
O20.1242 (15)0.0351 (8)0.0670 (11)0.0057 (9)0.0176 (10)0.0091 (7)
O30.0660 (11)0.1159 (16)0.0623 (11)0.0321 (10)0.0218 (9)0.0169 (10)
S10.0526 (3)0.0400 (3)0.0622 (4)0.0057 (2)0.0041 (2)0.0048 (2)
C120.0569 (13)0.0462 (12)0.0566 (13)0.0050 (10)0.0041 (10)0.0071 (10)
C130.0740 (17)0.0484 (14)0.0807 (18)0.0047 (12)0.0070 (13)0.0155 (12)
C140.126 (3)0.0484 (17)0.101 (2)0.0135 (18)0.016 (2)0.0136 (15)
C150.165 (4)0.0490 (18)0.113 (3)0.026 (2)0.009 (3)0.0052 (17)
C160.112 (3)0.077 (2)0.123 (3)0.042 (2)0.022 (2)0.0035 (19)
C170.0714 (17)0.0647 (17)0.095 (2)0.0182 (14)0.0082 (14)0.0027 (14)
C180.0501 (12)0.0457 (12)0.0485 (12)0.0006 (9)0.0134 (10)0.0045 (9)
C190.0616 (14)0.0678 (16)0.0490 (13)0.0193 (12)0.0164 (11)0.0106 (11)
C200.0634 (17)0.106 (2)0.104 (2)0.0036 (17)0.0055 (15)0.0181 (19)
C210.102 (2)0.0694 (19)0.084 (2)0.0232 (16)0.0195 (16)0.0267 (14)
C220.075 (2)0.087 (2)0.154 (3)0.0248 (17)0.009 (2)0.029 (2)
N20.0493 (11)0.0518 (11)0.0455 (10)0.0092 (8)0.0117 (8)0.0011 (8)
O40.0547 (10)0.0647 (11)0.1057 (14)0.0137 (8)0.0069 (9)0.0100 (10)
O50.0944 (14)0.0959 (14)0.0447 (9)0.0164 (11)0.0041 (8)0.0007 (9)
O60.0611 (10)0.0820 (12)0.0556 (9)0.0186 (9)0.0232 (8)0.0101 (8)
S20.0530 (3)0.0532 (3)0.0549 (3)0.0023 (3)0.0044 (2)0.0031 (2)
Geometric parameters (Å, º) top
C1—C61.375 (3)N1—H1N0.824 (16)
C1—C21.400 (3)O1—S11.4193 (18)
C1—S11.758 (2)O2—S11.4224 (17)
C2—C31.377 (3)C12—C171.375 (3)
C2—C111.504 (3)C12—C131.393 (3)
C3—C41.352 (4)C12—S21.765 (2)
C3—H30.9300C13—C141.397 (4)
C4—C51.366 (4)C13—C221.493 (4)
C4—H40.9300C14—C151.354 (5)
C5—C61.387 (4)C14—H140.9300
C5—H50.9300C15—C161.361 (5)
C6—H60.9300C15—H150.9300
C7—O31.214 (2)C16—C171.381 (4)
C7—N11.357 (3)C16—H160.9300
C7—C81.491 (3)C17—H170.9300
C8—C91.407 (5)C18—O61.219 (2)
C8—C10B1.439 (7)C18—N21.363 (3)
C8—C10A1.465 (6)C18—C191.505 (3)
C8—H8A0.9800C19—C211.510 (3)
C8—H8B0.9815C19—C201.512 (4)
C9—H9A0.9600C19—H190.9800
C9—H9B0.9600C20—H20A0.9600
C9—H9C0.9600C20—H20B0.9600
C10A—H10A0.9600C20—H20C0.9600
C10A—H10B0.9600C21—H21A0.9600
C10A—H10C0.9600C21—H21B0.9600
C10B—H8A1.2021C21—H21C0.9600
C10B—H8B1.0050C22—H22A0.9600
C10B—H10D0.9600C22—H22B0.9600
C10B—H10E0.9600C22—H22C0.9600
C10B—H10F0.9600N2—S21.6594 (18)
C11—H11A0.9600N2—H2N0.809 (15)
C11—H11B0.9600O4—S21.4191 (17)
C11—H11C0.9600O5—S21.4230 (18)
N1—S11.6530 (19)
C6—C1—C2121.9 (2)C2—C11—H11C109.5
C6—C1—S1116.01 (16)H11A—C11—H11C109.5
C2—C1—S1121.86 (17)H11B—C11—H11C109.5
C3—C2—C1116.5 (2)C7—N1—S1124.78 (15)
C3—C2—C11119.4 (2)C7—N1—H1N119.0 (17)
C1—C2—C11124.1 (2)S1—N1—H1N116.0 (17)
C4—C3—C2122.1 (3)O1—S1—O2119.96 (13)
C4—C3—H3119.0O1—S1—N1104.00 (11)
C2—C3—H3119.0O2—S1—N1108.46 (10)
C3—C4—C5121.3 (3)O1—S1—C1108.94 (11)
C3—C4—H4119.4O2—S1—C1108.20 (11)
C5—C4—H4119.4N1—S1—C1106.49 (9)
C4—C5—C6119.0 (3)C17—C12—C13121.7 (2)
C4—C5—H5120.5C17—C12—S2115.98 (19)
C6—C5—H5120.5C13—C12—S2122.29 (19)
C1—C6—C5119.2 (2)C12—C13—C14116.1 (3)
C1—C6—H6120.4C12—C13—C22123.8 (2)
C5—C6—H6120.4C14—C13—C22120.1 (3)
O3—C7—N1121.4 (2)C15—C14—C13122.0 (3)
O3—C7—C8122.5 (2)C15—C14—H14119.0
N1—C7—C8116.1 (2)C13—C14—H14119.0
C9—C8—C10B124.9 (5)C14—C15—C16121.3 (3)
C9—C8—C10A125.5 (4)C14—C15—H15119.4
C10B—C8—C10A39.5 (4)C16—C15—H15119.4
C9—C8—C7115.8 (3)C15—C16—C17118.9 (3)
C10B—C8—C7116.8 (5)C15—C16—H16120.6
C10A—C8—C7112.2 (3)C17—C16—H16120.6
C9—C8—H8A100.1C12—C17—C16120.2 (3)
C10B—C8—H8A55.8C12—C17—H17119.9
C10A—C8—H8A95.2C16—C17—H17119.9
C7—C8—H8A100.1O6—C18—N2120.2 (2)
C9—C8—H8B104.4O6—C18—C19124.29 (19)
C10B—C8—H8B44.2N2—C18—C19115.47 (17)
C10A—C8—H8B83.7C18—C19—C21110.9 (2)
C7—C8—H8B107.5C18—C19—C20108.4 (2)
H8A—C8—H8B11.9C21—C19—C20112.2 (2)
C8—C9—H9A109.5C18—C19—H19108.4
C8—C9—H9B109.5C21—C19—H19108.4
H9A—C9—H9B109.5C20—C19—H19108.4
C8—C9—H9C109.5C19—C20—H20A109.5
H9A—C9—H9C109.5C19—C20—H20B109.5
H9B—C9—H9C109.5H20A—C20—H20B109.5
C8—C10A—H10A109.5C19—C20—H20C109.5
C8—C10A—H10B109.5H20A—C20—H20C109.5
H10A—C10A—H10B109.5H20B—C20—H20C109.5
C8—C10A—H10C109.5C19—C21—H21A109.5
H10A—C10A—H10C109.5C19—C21—H21B109.5
H10B—C10A—H10C109.5H21A—C21—H21B109.5
C8—C10B—H8A42.4C19—C21—H21C109.5
C8—C10B—H8B42.9H21A—C21—H21C109.5
H8A—C10B—H8B2.7H21B—C21—H21C109.5
C8—C10B—H10D109.5C13—C22—H22A109.5
H8A—C10B—H10D107.3C13—C22—H22B109.5
H8B—C10B—H10D104.5H22A—C22—H22B109.5
C8—C10B—H10E109.5C13—C22—H22C109.5
H8A—C10B—H10E70.9H22A—C22—H22C109.5
H8B—C10B—H10E71.6H22B—C22—H22C109.5
H10D—C10B—H10E109.5C18—N2—S2124.90 (14)
C8—C10B—H10F109.5C18—N2—H2N120.5 (17)
H8A—C10B—H10F140.3S2—N2—H2N113.7 (17)
H8B—C10B—H10F142.8O4—S2—O5119.32 (12)
H10D—C10B—H10F109.5O4—S2—N2108.92 (10)
H10E—C10B—H10F109.5O5—S2—N2103.66 (10)
C2—C11—H11A109.5O4—S2—C12108.15 (11)
C2—C11—H11B109.5O5—S2—C12110.02 (11)
H11A—C11—H11B109.5N2—S2—C12105.94 (10)
C6—C1—C2—C30.5 (3)C2—C1—S1—N158.61 (19)
S1—C1—C2—C3174.84 (18)C17—C12—C13—C142.2 (4)
C6—C1—C2—C11178.5 (2)S2—C12—C13—C14178.89 (19)
S1—C1—C2—C114.1 (3)C17—C12—C13—C22177.4 (3)
C1—C2—C3—C40.4 (4)S2—C12—C13—C220.7 (3)
C11—C2—C3—C4178.7 (3)C12—C13—C14—C151.7 (4)
C2—C3—C4—C50.3 (5)C22—C13—C14—C15177.9 (3)
C3—C4—C5—C60.2 (5)C13—C14—C15—C160.0 (5)
C2—C1—C6—C50.5 (4)C14—C15—C16—C171.2 (5)
S1—C1—C6—C5175.1 (2)C13—C12—C17—C161.1 (4)
C4—C5—C6—C10.3 (5)S2—C12—C17—C16178.0 (2)
O3—C7—C8—C996.8 (4)C15—C16—C17—C120.7 (5)
N1—C7—C8—C984.1 (4)O6—C18—C19—C2144.9 (3)
O3—C7—C8—C10B100.0 (8)N2—C18—C19—C21137.2 (2)
N1—C7—C8—C10B79.1 (8)O6—C18—C19—C2078.7 (3)
O3—C7—C8—C10A56.6 (8)N2—C18—C19—C2099.2 (2)
N1—C7—C8—C10A122.5 (7)O6—C18—N2—S27.8 (3)
O3—C7—N1—S11.1 (3)C19—C18—N2—S2174.15 (16)
C8—C7—N1—S1179.8 (2)C18—N2—S2—O452.3 (2)
C7—N1—S1—O1177.60 (19)C18—N2—S2—O5179.70 (18)
C7—N1—S1—O248.9 (2)C18—N2—S2—C1263.9 (2)
C7—N1—S1—C167.4 (2)C17—C12—S2—O49.3 (2)
C6—C1—S1—O1121.66 (19)C13—C12—S2—O4173.83 (19)
C2—C1—S1—O153.0 (2)C17—C12—S2—O5122.6 (2)
C6—C1—S1—O210.3 (2)C13—C12—S2—O554.3 (2)
C2—C1—S1—O2175.03 (17)C17—C12—S2—N2125.97 (19)
C6—C1—S1—N1126.72 (17)C13—C12—S2—N257.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.82 (2)2.02 (2)2.844 (2)175 (2)
N2—H2N···O3i0.81 (2)2.08 (2)2.870 (2)167 (2)
Symmetry code: (i) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15NO3S
Mr241.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.829 (1), 16.351 (1), 13.351 (1)
β (°) 96.485 (8)
V3)2565.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.46 × 0.44 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.896, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
9793, 5225, 3538
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.06
No. of reflections5225
No. of parameters306
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.824 (16)2.022 (16)2.844 (2)175 (2)
N2—H2N···O3i0.809 (15)2.076 (16)2.870 (2)167 (2)
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds