organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)succinimide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 4 July 2011; accepted 5 July 2011; online 9 July 2011)

In the title compound, C10H8ClNO2, the chloro­benzene and the essentially planar (r.m.s. deviation = 0.030 Å) pyrrolidine ring are tilted by 59.5 (1)° with respect to one another.

Related literature

For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]); Saraswathi et al. (2010a[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o921.],b[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1269.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClNO2

  • Mr = 209.62

  • Orthorhombic, P b c a

  • a = 12.884 (2) Å

  • b = 7.173 (1) Å

  • c = 20.805 (3) Å

  • V = 1922.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.46 × 0.12 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.849, Tmax = 0.968

  • 6087 measured reflections

  • 1755 independent reflections

  • 1163 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.137

  • S = 1.33

  • 1755 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our studies on the effects of ring and side chain substitutions on the structures and other aspects of biologically significant compounds (Bhat & Gowda, 2000; Gowda et al., 1999, 2007; Saraswathi et al., 2010a,b), the crystal structure of N-(3-chlorophenyl)succinimide has been determined (Fig. 1). In the structure, the molecule is non-planar with the benzene and pyrrolidine rings tilted by 59.5 (1)° with respect to one another, compared to the values of 69.5 (1)° in N-(2-chlorophenyl)- succinimide (Saraswathi et al., 2010a) and 52.5 (1)° in N-(3-methylphenyl)succinimide (Saraswathi et al., 2010b).

The torsional angles of the groups, C2 - C1 - N1 - C7, C6 - C1 - N1 - C7, C2 - C1 - N1 - C10 and C6 - C1 - N1 - C10 in the molecule are -117.5 (5), 61.9 (5), 57.7 (5)° and -123.0 (4), respectively, while the torsional angles of the groups, O1 - C7 - N1 - C1, C8 - C7 - N1 - C1, O2 - C10 - N1 - C1 and C9 - C10 - N1 - C1 are 0.5 (6), -178.4 (4), 2.7 (7) and -177.6 (4)°, respectively.

The packing of molecules into layered chains along a-axis is shown in Fig. 2.

Related literature top

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (1999, 2007); Saraswathi et al. (2010a,b).

Experimental top

The solution of succinic anhydride (0.02 mole) in toluene (25 ml) was treated dropwise with the solution of 3-chloroaniline (0.02 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-chloroaniline. The resultant solid N-(3-chlorophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol.

N-(3-chlorophenyl)succinamic acid was heated for 2 h and then allowed to cool slowly to room temperature to get the compound, N-(3-chlorophenyl)succinimide. The purity of the compound was checked and characterized by its infrared spectra.

Needle like colourless single crystals of the compound used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling. Displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I).
N-(3-Chlorophenyl)succinimide top
Crystal data top
C10H8ClNO2F(000) = 864
Mr = 209.62Dx = 1.448 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1436 reflections
a = 12.884 (2) Åθ = 2.8–27.8°
b = 7.173 (1) ŵ = 0.37 mm1
c = 20.805 (3) ÅT = 293 K
V = 1922.7 (5) Å3Needle, colourless
Z = 80.46 × 0.12 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1755 independent reflections
Radiation source: fine-focus sealed tube1163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 915
Tmin = 0.849, Tmax = 0.968k = 68
6087 measured reflectionsl = 2522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.0157P)2 + 3.1516P]
where P = (Fo2 + 2Fc2)/3
1755 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C10H8ClNO2V = 1922.7 (5) Å3
Mr = 209.62Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.884 (2) ŵ = 0.37 mm1
b = 7.173 (1) ÅT = 293 K
c = 20.805 (3) Å0.46 × 0.12 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1755 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1163 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.968Rint = 0.044
6087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.33Δρmax = 0.32 e Å3
1755 reflectionsΔρmin = 0.46 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1240 (3)0.3985 (6)0.39944 (19)0.0406 (10)
C20.1122 (3)0.2512 (6)0.44197 (19)0.0427 (10)
H20.10350.13000.42690.051*
C30.1135 (3)0.2881 (7)0.5070 (2)0.0474 (12)
C40.1279 (3)0.4651 (8)0.5302 (2)0.0572 (13)
H40.12920.48740.57430.069*
C50.1403 (3)0.6090 (7)0.4874 (2)0.0590 (14)
H50.15040.72940.50280.071*
C60.1381 (3)0.5785 (6)0.4213 (2)0.0489 (12)
H60.14590.67690.39260.059*
C70.2069 (4)0.3968 (6)0.2912 (2)0.0437 (11)
C80.1764 (4)0.3477 (7)0.2235 (2)0.0557 (13)
H8A0.22600.26190.20470.067*
H8B0.17250.45860.19700.067*
C90.0704 (4)0.2568 (7)0.2297 (2)0.0600 (14)
H9A0.02030.31890.20230.072*
H9B0.07380.12630.21770.072*
C100.0405 (4)0.2769 (6)0.2994 (2)0.0498 (12)
N10.1227 (3)0.3623 (4)0.33150 (16)0.0408 (9)
O10.2895 (2)0.4592 (4)0.30949 (15)0.0591 (9)
O20.0397 (3)0.2302 (5)0.32476 (16)0.0706 (10)
Cl10.09625 (11)0.1056 (2)0.56153 (6)0.0722 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (2)0.048 (3)0.041 (2)0.002 (2)0.0020 (19)0.006 (2)
C20.042 (3)0.042 (2)0.043 (3)0.004 (2)0.001 (2)0.006 (2)
C30.036 (3)0.067 (3)0.039 (3)0.002 (2)0.001 (2)0.005 (2)
C40.042 (3)0.085 (4)0.044 (3)0.004 (3)0.003 (2)0.021 (3)
C50.041 (3)0.065 (3)0.071 (3)0.008 (3)0.006 (3)0.035 (3)
C60.038 (3)0.045 (3)0.064 (3)0.004 (2)0.005 (2)0.008 (2)
C70.055 (3)0.035 (2)0.042 (2)0.003 (2)0.000 (2)0.005 (2)
C80.076 (3)0.052 (3)0.040 (3)0.002 (3)0.003 (2)0.007 (2)
C90.081 (4)0.053 (3)0.046 (3)0.006 (3)0.018 (3)0.003 (2)
C100.057 (3)0.039 (3)0.053 (3)0.003 (2)0.013 (3)0.006 (2)
N10.044 (2)0.040 (2)0.0386 (19)0.0028 (17)0.0024 (17)0.0015 (17)
O10.053 (2)0.069 (2)0.055 (2)0.0133 (18)0.0055 (17)0.0002 (17)
O20.057 (2)0.087 (3)0.068 (2)0.024 (2)0.011 (2)0.003 (2)
Cl10.0824 (9)0.0924 (10)0.0418 (6)0.0078 (8)0.0035 (7)0.0082 (7)
Geometric parameters (Å, º) top
C1—C61.380 (6)C7—O11.214 (5)
C1—C21.387 (6)C7—N11.393 (5)
C1—N11.437 (5)C7—C81.505 (6)
C2—C31.379 (6)C8—C91.518 (7)
C2—H20.9300C8—H8A0.9700
C3—C41.371 (6)C8—H8B0.9700
C3—Cl11.746 (5)C9—C101.507 (6)
C4—C51.374 (7)C9—H9A0.9700
C4—H40.9300C9—H9B0.9700
C5—C61.393 (6)C10—O21.208 (5)
C5—H50.9300C10—N11.395 (5)
C6—H60.9300
C6—C1—C2121.2 (4)N1—C7—C8108.5 (4)
C6—C1—N1119.6 (4)C7—C8—C9104.9 (4)
C2—C1—N1119.2 (4)C7—C8—H8A110.8
C3—C2—C1118.6 (4)C9—C8—H8A110.8
C3—C2—H2120.7C7—C8—H8B110.8
C1—C2—H2120.7C9—C8—H8B110.8
C4—C3—C2121.7 (4)H8A—C8—H8B108.8
C4—C3—Cl1118.9 (4)C10—C9—C8105.7 (4)
C2—C3—Cl1119.4 (4)C10—C9—H9A110.6
C3—C4—C5118.9 (4)C8—C9—H9A110.6
C3—C4—H4120.6C10—C9—H9B110.6
C5—C4—H4120.6C8—C9—H9B110.6
C4—C5—C6121.4 (5)H9A—C9—H9B108.7
C4—C5—H5119.3O2—C10—N1124.2 (4)
C6—C5—H5119.3O2—C10—C9127.8 (4)
C1—C6—C5118.3 (4)N1—C10—C9108.0 (4)
C1—C6—H6120.8C7—N1—C10112.4 (4)
C5—C6—H6120.8C7—N1—C1123.3 (3)
O1—C7—N1124.1 (4)C10—N1—C1124.1 (4)
O1—C7—C8127.5 (4)
C6—C1—C2—C30.8 (6)C8—C9—C10—N12.7 (5)
N1—C1—C2—C3179.9 (4)O1—C7—N1—C10175.1 (4)
C1—C2—C3—C41.1 (7)C8—C7—N1—C106.0 (5)
C1—C2—C3—Cl1178.8 (3)O1—C7—N1—C10.5 (6)
C2—C3—C4—C50.6 (7)C8—C7—N1—C1178.4 (4)
Cl1—C3—C4—C5179.3 (3)O2—C10—N1—C7178.3 (4)
C3—C4—C5—C60.3 (7)C9—C10—N1—C72.0 (5)
C2—C1—C6—C50.1 (6)O2—C10—N1—C12.7 (7)
N1—C1—C6—C5179.2 (4)C9—C10—N1—C1177.6 (4)
C4—C5—C6—C10.6 (7)C6—C1—N1—C761.9 (5)
O1—C7—C8—C9173.9 (4)C2—C1—N1—C7117.5 (4)
N1—C7—C8—C97.3 (5)C6—C1—N1—C10123.0 (4)
C7—C8—C9—C105.9 (5)C2—C1—N1—C1057.7 (5)
C8—C9—C10—O2176.9 (5)

Experimental details

Crystal data
Chemical formulaC10H8ClNO2
Mr209.62
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.884 (2), 7.173 (1), 20.805 (3)
V3)1922.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.46 × 0.12 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.849, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
6087, 1755, 1163
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.137, 1.33
No. of reflections1755
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.46

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds