organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(Benzyl­amino)-2-hy­dr­oxy­prop­yl]-2,6-di-tert-butyl­phenol

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 4 July 2011; accepted 6 July 2011; online 13 July 2011)

In the title compound, C24H35NO2, the planes of the two aromatic rings form a dihedral angle of 72.76 (4)°. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen-bond inter­actions, forming an extended two-dimensional framework parallel to the ab plane.

Related literature

For related compounds see: Asgarova et al. (2011[Asgarova, A. R., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o852.]); Krysin et al. (2010[Krysin, A. P., Tolstikova, T. G., Bryzgalov, A. O., Shul\'ts, E. E. & Shakirov, M. M. (2010). Russ. Patent RU 2396248 C1.])

[Scheme 1]

Experimental

Crystal data
  • C24H35NO2

  • Mr = 369.53

  • Orthorhombic, P b c a

  • a = 9.8053 (10) Å

  • b = 18.870 (2) Å

  • c = 23.584 (3) Å

  • V = 4363.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.986

  • 42619 measured reflections

  • 4758 independent reflections

  • 3478 reflections with I > 2σ(I)

  • Rint = 0.113

Refinement
  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.243

  • S = 1.00

  • 4758 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.94 1.96 2.811 (3) 149
O2—H2O⋯N1ii 0.93 2.01 2.873 (4) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

Supporting information


Comment top

Fig. 1 shows the molecular structure of title compound, (I). The benzene ring is coplanar with four and two of C and H atoms of the tert-butyl groups respectively, and with the O atom of the hydroxyl group on the aliphatic chain [r.m.s 0.0068 Å] and make a dihedral angle of 72.76 (4)° with the phenyl ring. In the crystal structure the molecules are linked by O—H···O and O—H···N hydrogen bond interactions forming an extended two-dimensional framework parallel to the ab plane, Fig. 2. In the literature, pharmaceutical activity of other similar compounds such as di-3-(3,5-di-tert-butyl-4-hydroxyphnyl)-2-hydroxy-1-(N-isopopylamino)propanesuccinate (Krysin et al., 2010) has been reported.

Related literature top

For related compounds see: Asgarova et al. (2011); Krysin et al. (2010)

Experimental top

A mixture of 2,6-di-tert-butyl-4-(3-chloro-2-hydroxypropyl)phenol (0.2 g, 0.00067 mol), with benzylamine (0.2 g, 0.0019 mol) and 0.1 g NaOH (0.1 g, 0.025 mol) was stirred in water (10 ml) for 8 h at 373K. After cooling down, the organic layer which was unsoluble in water easily separated. Then this solid crude product was crystallized in isopropanole. After recrystallizing in DMSO single crystals were obtained. Yield 0.2g (80.97%). MP 135 °C. 1H NMR (300 MHz, DMSO-d6) δ 1.35 (s, 18H, 2(CH3)3), 1.98 (s, 1H, NH), 2.49 (d, 2H, CH2Ar),3.43 (s, 1H, OH), 3.67 (s, 4H, 2CH2N), 4.62 (s, 1H, OH), 6.91 (s, 2H, 2CHarom), 7.27(s, 5H, 5CHarom). 13CNMR (75 MHz, DMSO-d6) δ 30.90, 34.83,42.11, 53.63, 54.92, 71.36, 125.79, 126.92, 128.40, 128.52, 130.75, 139.21,141.34, 152.29

Refinement top

H atoms bonded to O and N were found in a difference map, but refined using a riding model starting from this position. All H-atoms bonded to C were placed in calculated positions [C—H = 0.99–0.93 Å, Uiso(H) = 1.5 Ueq(CH3) and Uiso(H) = 1.2 Ueq(CH and CH2] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. H atom were omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of (I) showing the two-dimensional framework constructed via O—H··· O and O—H··· N hydrogen bonds. Hydrogen bonds are depicted as dashed lines [symmetry code: (i) -x + 1/2, y - 1/2, z; (ii) -x + 1,-y + 1,-z + 1]. The tert-butyl groups and all H atoms not involved in hydrogen bonds were omitted for clarity
4-[3-(Benzylamino)-2-hydroxypropyl]-2,6-di-tert-butylphenol top
Crystal data top
C24H35NO2F(000) = 1616
Mr = 369.53Dx = 1.125 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7811 reflections
a = 9.8053 (10) Åθ = 2.3–26.2°
b = 18.870 (2) ŵ = 0.07 mm1
c = 23.584 (3) ÅT = 296 K
V = 4363.7 (8) Å3Prism, colourless
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
4758 independent reflections
Radiation source: fine-focus sealed tube3478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.113
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.979, Tmax = 0.986k = 2424
42619 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091Hydrogen site location: difference Fourier map
wR(F2) = 0.243H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2 + 7.4283P]
where P = (Fo2 + 2Fc2)/3
4758 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H35NO2V = 4363.7 (8) Å3
Mr = 369.53Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.8053 (10) ŵ = 0.07 mm1
b = 18.870 (2) ÅT = 296 K
c = 23.584 (3) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
4758 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3478 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.113
42619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0910 restraints
wR(F2) = 0.243H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
4758 reflectionsΔρmin = 0.23 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0783 (2)0.17031 (12)0.38558 (11)0.0539 (6)
H1O0.11990.12810.39810.081*
O20.3869 (2)0.54317 (11)0.44598 (10)0.0494 (6)
H2O0.48080.54810.44440.074*
N10.3259 (3)0.48697 (14)0.55264 (11)0.0423 (6)
H1N0.32930.53550.54960.051*
C10.3085 (4)0.50627 (18)0.65547 (14)0.0480 (8)
C20.4181 (4)0.4740 (2)0.68157 (17)0.0638 (10)
H2A0.45280.43190.66700.077*
C30.4768 (5)0.5039 (3)0.72923 (18)0.0777 (13)
H3A0.55190.48240.74610.093*
C40.4248 (5)0.5646 (3)0.75143 (18)0.0820 (14)
H4A0.46230.58370.78430.098*
C50.3186 (6)0.5974 (3)0.7259 (2)0.0935 (16)
H5A0.28500.63970.74060.112*
C60.2600 (5)0.5680 (3)0.67820 (18)0.0720 (12)
H6A0.18640.59060.66120.086*
C70.2441 (4)0.4746 (2)0.60383 (15)0.0557 (9)
H7A0.23320.42400.60940.067*
H7B0.15410.49490.59860.067*
C80.2504 (3)0.46587 (18)0.50201 (13)0.0447 (7)
H8A0.16960.49520.49850.054*
H8B0.22100.41700.50610.054*
C90.3352 (3)0.47289 (16)0.44903 (13)0.0407 (7)
H9A0.41250.44010.45180.049*
C100.2549 (4)0.45515 (19)0.39529 (14)0.0508 (8)
H10A0.17560.48570.39340.061*
H10B0.31150.46550.36260.061*
C110.2085 (3)0.37951 (17)0.39179 (12)0.0394 (7)
C120.2873 (3)0.32842 (18)0.36563 (13)0.0438 (7)
H12A0.36990.34200.34960.053*
C130.2495 (3)0.25828 (18)0.36215 (13)0.0424 (7)
C140.1253 (3)0.23858 (16)0.38807 (12)0.0373 (6)
C150.0408 (3)0.28881 (15)0.41439 (12)0.0346 (6)
C160.0847 (3)0.35827 (16)0.41475 (12)0.0380 (7)
H16A0.02890.39240.43110.046*
C170.0959 (3)0.26783 (17)0.44140 (14)0.0447 (7)
C180.0733 (4)0.2144 (2)0.48945 (18)0.0654 (11)
H18A0.15870.20440.50770.098*
H18B0.01060.23380.51660.098*
H18C0.03630.17130.47410.098*
C190.1680 (4)0.3316 (2)0.46782 (19)0.0654 (11)
H19A0.25060.31620.48590.098*
H19B0.18930.36540.43880.098*
H19C0.10930.35310.49550.098*
C200.1917 (4)0.2370 (2)0.3965 (2)0.0698 (12)
H20A0.27790.22570.41370.105*
H20B0.15210.19470.38090.105*
H20C0.20520.27110.36690.105*
C210.3381 (4)0.2040 (2)0.33008 (16)0.0582 (10)
C220.2571 (5)0.1687 (3)0.2829 (2)0.105 (2)
H22A0.31580.13760.26180.157*
H22B0.22080.20430.25810.157*
H22C0.18360.14180.29910.157*
C230.4598 (5)0.2401 (3)0.3017 (3)0.106 (2)
H23A0.51400.20520.28250.158*
H23B0.51410.26340.33000.158*
H23C0.42760.27440.27480.158*
C240.3973 (5)0.1493 (3)0.3702 (2)0.0795 (13)
H24A0.45520.11750.34940.119*
H24B0.32450.12290.38750.119*
H24C0.44960.17260.39900.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0534 (13)0.0337 (12)0.0747 (16)0.0011 (10)0.0039 (12)0.0016 (11)
O20.0490 (12)0.0341 (12)0.0651 (15)0.0086 (10)0.0005 (11)0.0037 (10)
N10.0461 (14)0.0367 (14)0.0442 (14)0.0042 (11)0.0033 (11)0.0043 (11)
C10.0559 (19)0.0449 (19)0.0433 (17)0.0066 (15)0.0131 (15)0.0010 (15)
C20.082 (3)0.054 (2)0.056 (2)0.004 (2)0.005 (2)0.0031 (18)
C30.081 (3)0.097 (4)0.055 (2)0.005 (3)0.004 (2)0.002 (2)
C40.089 (3)0.114 (4)0.044 (2)0.020 (3)0.008 (2)0.017 (3)
C50.106 (4)0.101 (4)0.074 (3)0.008 (3)0.017 (3)0.035 (3)
C60.075 (3)0.079 (3)0.063 (2)0.009 (2)0.011 (2)0.016 (2)
C70.0503 (18)0.060 (2)0.057 (2)0.0098 (17)0.0099 (17)0.0030 (18)
C80.0410 (15)0.0418 (17)0.0514 (18)0.0083 (14)0.0009 (14)0.0021 (15)
C90.0427 (16)0.0295 (15)0.0500 (17)0.0063 (12)0.0011 (13)0.0042 (13)
C100.0574 (19)0.049 (2)0.0456 (18)0.0123 (16)0.0049 (16)0.0118 (15)
C110.0428 (16)0.0410 (17)0.0344 (14)0.0074 (13)0.0057 (12)0.0083 (13)
C120.0372 (15)0.057 (2)0.0375 (15)0.0035 (14)0.0003 (12)0.0092 (15)
C130.0374 (14)0.0522 (19)0.0377 (15)0.0077 (14)0.0001 (13)0.0034 (14)
C140.0381 (14)0.0344 (16)0.0395 (15)0.0004 (12)0.0042 (12)0.0053 (12)
C150.0354 (14)0.0348 (15)0.0335 (14)0.0006 (12)0.0003 (11)0.0029 (12)
C160.0418 (15)0.0363 (16)0.0359 (14)0.0020 (13)0.0020 (12)0.0006 (12)
C170.0361 (15)0.0415 (18)0.0563 (19)0.0004 (13)0.0069 (14)0.0008 (15)
C180.064 (2)0.063 (3)0.069 (2)0.0023 (19)0.021 (2)0.012 (2)
C190.051 (2)0.067 (3)0.078 (3)0.0075 (19)0.0229 (19)0.002 (2)
C200.0408 (18)0.068 (3)0.101 (3)0.0070 (18)0.009 (2)0.005 (2)
C210.0445 (18)0.073 (3)0.057 (2)0.0152 (18)0.0074 (16)0.0003 (19)
C220.083 (3)0.157 (6)0.075 (3)0.041 (4)0.010 (3)0.052 (3)
C230.074 (3)0.128 (5)0.115 (4)0.025 (3)0.051 (3)0.007 (4)
C240.062 (2)0.084 (3)0.093 (3)0.031 (2)0.002 (2)0.001 (3)
Geometric parameters (Å, º) top
O1—C141.370 (4)C12—H12A0.9300
O1—H1O0.9421C13—C141.412 (4)
O2—C91.422 (4)C13—C211.541 (5)
O2—H2O0.9261C14—C151.404 (4)
N1—C81.460 (4)C15—C161.380 (4)
N1—C71.468 (4)C15—C171.536 (4)
N1—H1N0.9181C16—H16A0.9300
C1—C61.368 (5)C17—C191.528 (5)
C1—C21.381 (5)C17—C201.530 (5)
C1—C71.496 (5)C17—C181.533 (5)
C2—C31.383 (6)C18—H18A0.9600
C2—H2A0.9300C18—H18B0.9600
C3—C41.359 (7)C18—H18C0.9600
C3—H3A0.9300C19—H19A0.9600
C4—C51.352 (7)C19—H19B0.9600
C4—H4A0.9300C19—H19C0.9600
C5—C61.380 (6)C20—H20A0.9600
C5—H5A0.9300C20—H20B0.9600
C6—H6A0.9300C20—H20C0.9600
C7—H7A0.9700C21—C241.516 (6)
C7—H7B0.9700C21—C221.521 (6)
C8—C91.507 (4)C21—C231.528 (6)
C8—H8A0.9700C22—H22A0.9600
C8—H8B0.9700C22—H22B0.9600
C9—C101.529 (4)C22—H22C0.9600
C9—H9A0.9800C23—H23A0.9600
C10—C111.500 (5)C23—H23B0.9600
C10—H10A0.9700C23—H23C0.9600
C10—H10B0.9700C24—H24A0.9600
C11—C121.381 (5)C24—H24B0.9600
C11—C161.388 (4)C24—H24C0.9600
C12—C131.377 (5)
C14—O1—H1O129.5O1—C14—C13121.3 (3)
C9—O2—H2O116.8C15—C14—C13121.5 (3)
C8—N1—C7110.6 (2)C16—C15—C14117.4 (3)
C8—N1—H1N103.2C16—C15—C17121.0 (3)
C7—N1—H1N104.0C14—C15—C17121.7 (3)
C6—C1—C2118.1 (4)C15—C16—C11123.0 (3)
C6—C1—C7120.9 (4)C15—C16—H16A118.5
C2—C1—C7121.0 (3)C11—C16—H16A118.5
C1—C2—C3120.4 (4)C19—C17—C20107.3 (3)
C1—C2—H2A119.8C19—C17—C18106.5 (3)
C3—C2—H2A119.8C20—C17—C18110.4 (3)
C4—C3—C2120.1 (5)C19—C17—C15111.7 (3)
C4—C3—H3A120.0C20—C17—C15110.3 (3)
C2—C3—H3A120.0C18—C17—C15110.5 (3)
C5—C4—C3120.2 (4)C17—C18—H18A109.5
C5—C4—H4A119.9C17—C18—H18B109.5
C3—C4—H4A119.9H18A—C18—H18B109.5
C4—C5—C6119.9 (5)C17—C18—H18C109.5
C4—C5—H5A120.0H18A—C18—H18C109.5
C6—C5—H5A120.0H18B—C18—H18C109.5
C1—C6—C5121.2 (5)C17—C19—H19A109.5
C1—C6—H6A119.4C17—C19—H19B109.5
C5—C6—H6A119.4H19A—C19—H19B109.5
N1—C7—C1112.0 (3)C17—C19—H19C109.5
N1—C7—H7A109.2H19A—C19—H19C109.5
C1—C7—H7A109.2H19B—C19—H19C109.5
N1—C7—H7B109.2C17—C20—H20A109.5
C1—C7—H7B109.2C17—C20—H20B109.5
H7A—C7—H7B107.9H20A—C20—H20B109.5
N1—C8—C9112.0 (2)C17—C20—H20C109.5
N1—C8—H8A109.2H20A—C20—H20C109.5
C9—C8—H8A109.2H20B—C20—H20C109.5
N1—C8—H8B109.2C24—C21—C22110.9 (4)
C9—C8—H8B109.2C24—C21—C23106.1 (4)
H8A—C8—H8B107.9C22—C21—C23106.4 (4)
O2—C9—C8108.7 (3)C24—C21—C13111.3 (3)
O2—C9—C10110.2 (3)C22—C21—C13110.8 (3)
C8—C9—C10112.6 (3)C23—C21—C13111.1 (4)
O2—C9—H9A108.4C21—C22—H22A109.5
C8—C9—H9A108.4C21—C22—H22B109.5
C10—C9—H9A108.4H22A—C22—H22B109.5
C11—C10—C9114.2 (3)C21—C22—H22C109.5
C11—C10—H10A108.7H22A—C22—H22C109.5
C9—C10—H10A108.7H22B—C22—H22C109.5
C11—C10—H10B108.7C21—C23—H23A109.5
C9—C10—H10B108.7C21—C23—H23B109.5
H10A—C10—H10B107.6H23A—C23—H23B109.5
C12—C11—C16117.5 (3)C21—C23—H23C109.5
C12—C11—C10121.3 (3)H23A—C23—H23C109.5
C16—C11—C10121.2 (3)H23B—C23—H23C109.5
C13—C12—C11123.2 (3)C21—C24—H24A109.5
C13—C12—H12A118.4C21—C24—H24B109.5
C11—C12—H12A118.4H24A—C24—H24B109.5
C12—C13—C14117.4 (3)C21—C24—H24C109.5
C12—C13—C21121.1 (3)H24A—C24—H24C109.5
C14—C13—C21121.6 (3)H24B—C24—H24C109.5
O1—C14—C15117.1 (3)
C6—C1—C2—C30.2 (6)C21—C13—C14—O10.2 (4)
C7—C1—C2—C3179.9 (4)C12—C13—C14—C152.5 (4)
C1—C2—C3—C41.4 (7)C21—C13—C14—C15176.2 (3)
C2—C3—C4—C52.3 (7)O1—C14—C15—C16177.1 (3)
C3—C4—C5—C62.0 (8)C13—C14—C15—C161.0 (4)
C2—C1—C6—C50.2 (6)O1—C14—C15—C172.4 (4)
C7—C1—C6—C5179.8 (4)C13—C14—C15—C17178.5 (3)
C4—C5—C6—C10.7 (8)C14—C15—C16—C111.7 (4)
C8—N1—C7—C1170.7 (3)C17—C15—C16—C11178.8 (3)
C6—C1—C7—N1103.3 (4)C12—C11—C16—C152.6 (4)
C2—C1—C7—N176.8 (4)C10—C11—C16—C15177.4 (3)
C7—N1—C8—C9175.8 (3)C16—C15—C17—C191.2 (4)
N1—C8—C9—O254.2 (3)C14—C15—C17—C19179.3 (3)
N1—C8—C9—C10176.6 (3)C16—C15—C17—C20118.1 (3)
O2—C9—C10—C11173.9 (3)C14—C15—C17—C2061.4 (4)
C8—C9—C10—C1164.5 (4)C16—C15—C17—C18119.5 (3)
C9—C10—C11—C1291.6 (4)C14—C15—C17—C1861.0 (4)
C9—C10—C11—C1688.4 (4)C12—C13—C21—C24114.3 (4)
C16—C11—C12—C130.9 (4)C14—C13—C21—C2467.0 (4)
C10—C11—C12—C13179.1 (3)C12—C13—C21—C22121.8 (4)
C11—C12—C13—C141.6 (5)C14—C13—C21—C2256.9 (5)
C11—C12—C13—C21177.2 (3)C12—C13—C21—C233.8 (5)
C12—C13—C14—O1178.5 (3)C14—C13—C21—C23174.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.941.962.811 (3)149
O2—H2O···N1ii0.932.012.873 (4)155
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H35NO2
Mr369.53
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.8053 (10), 18.870 (2), 23.584 (3)
V3)4363.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
42619, 4758, 3478
Rint0.113
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.243, 1.00
No. of reflections4758
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.941.962.811 (3)149
O2—H2O···N1ii0.932.012.873 (4)155
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to Baku State University for supporting this study. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge licence to the Cambridge Structural Database.

References

First citationAsgarova, A. R., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrysin, A. P., Tolstikova, T. G., Bryzgalov, A. O., Shul\'ts, E. E. & Shakirov, M. M. (2010). Russ. Patent RU 2396248 C1.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds